
情報処理技法
(Javaプログラミング)2

第8回
継承

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 1

第8回の内容
継承

オーバーライド

ポリモーフィズム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 2

前回の出席課題の回答
「クラス」と「オブジェクト」の違いについて、具体例を交えて説明しなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 3

「クラス」とは、プログラム中で扱う様々なもの(現実世界の実物)を分類したものであり、
「オブジェクト」とは、クラスにあてはまる具体的な実物である。具体的には、図書館の
蔵書管理システムを考えると、システムで扱うデータとして、本のデータがある。「本」が「クラス」に
相当する。これは、「本」にあてはまる実物は図書館の中にたくさん存在するためである。また、
「蔵書ID: 0001, 基礎講座 Java, 白銀純子, 毎日コミュニケーションズ,2010」のように、具体的に
ただ1つに特定できる実物がオブジェクトである。

解答例:

前回の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 4

課題のフィードバック～割り算～(1)
 int型での割り算の使い方

int型の割り算は、商と余りを計算するテクニックが便利

ある数から何かを取り除き、その取り除いた数からまたさらに取り除く、ということを
繰り返す場合に有効

引き算ではなく割り算で取り除く場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 5

課題のフィードバック～割り算～(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 6

Ex. 第1回課題のその2: 数を各桁に分解するには?
 分解したい数をinput、各桁を入れる配列をnumとする
 変数inputの値が123だとすると...

for文で、inputの値を10で割った商と余りを計算する
 iが0のときのinputに対する計算: 1 2 3 →商: 12, 余り: 3
 余りを配列num[0]に入れ、商でinputの値を更新

 iが1のとき: 12 →商: 1, 余り: 2
 余りを配列num[1]に入れ、商でinputの値を更新

 iが2のとき: 1 →商: 0, 余り: 1
 余りを配列num[2]に入れ、商でinputの値を更新

 iが3のとき: 0 →商: 0, 余り: 0 になるので、終了
: 商 : 余り

課題のフィードバック～割り算～(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 7

int i = 0;
while (input != 0) {

num[i] = input % 10;
input = input / 10;
i = i + 1;

}

プログラム inputの値を更新し続けて、0になったら終わり

inputを10で割った余り(各桁の数を計算)

次の桁の計算に向けて、inputの値を更新

配列の添え字を+1

※標準入力された数を、文字列の段階で数えた文字数がそのまま桁数になるので、
その桁数でfor文で分解してもOK

課題のフィードバック～割り算～(4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 8

Ex. 第1回課題のその3: 硬貨の枚数を計算するには?
 枚数を計算したい金額をmoneyとする
 変数moneyの値が987だとすると...

moneyの値を硬貨の金額で割った商と余りを計算する
 500円玉の枚数計算: 987 →商: 1, 余り: 487
 商が500円玉の枚数、余りでmoneyの値を更新

 100円玉の枚数計算: 487 →商: 4, 余り: 87
 商が100円玉の枚数、余りでmoneyの値を更新

 50円玉の枚数計算: 87 →商: 1, 余り: 37
 商が50円玉の枚数、余りでmoneyの値を更新

 10円玉の枚数計算: 37 →商: 3, 余り: 7
 商が10円玉の枚数、余りでmoneyの値を更新

 5円玉の枚数計算: 7 →商: 1, 余り: 2
 商が10円玉の枚数、余りが1円玉の枚数

課題のフィードバック～割り算～(4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 9

int i, coin[] = {500, 100, 50, 10, 5, 1}, coinNum = new int[6];
for (i = 0, i < 6; i = i + 1) {

coinNum[i] = money / coin[i];
money = money % coin[i];

}

System.out.println("硬貨の枚数は");
for (i = 0; i < 6; i = i + 1) {

System.out.println(coin[i] + "円玉: " + coinNum[i] + "枚");
}

System.out.println("です。");

硬貨の金額を設定した配列を用意

coinNumは、配列0番に500円玉の枚数、1番に100円玉の枚数...というように枚数が
設定された配列になる(for文で書くとすっきり書ける)

各硬貨の枚数を表す配列

500円玉から順に
枚数計算

出力も配列で可能

課題のフィードバック～フラグ～(1)
ループ文の処理の結果によって、その後の処理内容が変わる場合

単純にif文では処理ができない

今回の課題で使えそうなところ

その1で、暗証番号の入力が成功したかどうか

その1で、引き出しの処理が成功したかどうか

その4で、目的の数が見つかったかどうか

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 10

「フラグ」という考え方を使う
(「フラグを立てる」という言い方をする)

課題のフィードバック～フラグ～(2)
第1回課題その4

乱数の中に、入力された数が複数存在するかも

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 11

for(i = 0; i < 100; i = i + 1) {
if (random[i] == num) {

i = 101; (または break;)
}

}
if (i < 100) {

System.out.println("数" + num + "は" + i + "番目にありました。");
} else {

System.out.println("Not Found");
}

実際に多かったプログラム

数が見つかると、ループを強制終了

数が見つかっても、1つだけ出力

実際のプログラムだと...
 情報検索で、特定のキーワードを含むWebページを探す, etc.

検索結果が1つだけ、というわけにはいかない

課題のフィードバック～フラグ～(3)
フラグの使い方

int型の変数を1つ用意する(ここではflagとする)

変数flagで扱う値が2種類であれば、boolean型でもOK

変数flagに0を代入する

ループ文の中で、ある特定の状況になった場合、その状況に応じて1, 2, 3, ...と
いう数をflagに代入する

ループ文の後の条件分岐の条件に応じて、いくつ分の数があれば良いかを決める

ループ文の後でif文でflagの値をもとに条件分岐する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 12

ループ文で特定の状況になったときに旗(フラグ)を立てておくことで、ループの終了後に旗が
どこかに立っていれば(いなければ)...ということで処理をする

課題のフィードバック～フラグ～(4)
Ex. 逐次探索で、探したいものが見つからない場合に「Not found!」と
出力する

探したいものが見つかった、ということで旗を立てる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 13

int i, flag = 0;
for (i = 0; i < 100; i = i + 1) {

if (random[i] == num) {
System.out.println("数" + num + "は" + i + "番目にありました。");
flag = 1;

}
}
if (flag == 0) {

System.out.println("Not found!");
}

数が乱数の中に見つかると、
flagの値を変更

※この場合、「見つからなかった場合」はflagの初期値としない
(for文で、「見つかった」は判断できるが、「見つからなかった」は判断できないため)

flagの値が0のまま
= 数が見つからなかった

前回の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 14

メッセージ
メッセージ = あるクラスで定義されたメソッドを呼び出すこと

「オブジェクト名.メソッド」(または「クラス名.メソッド」)の形式で呼び出し

ただし、メソッドを定義している同じクラス内で呼び出すときは、オブジェクト名や
クラス名は省略

Ex1. str.substring(m, n)

Stringクラスに定義されている「substring」というメソッドを呼び出し
(strはStringクラスのオブジェクト = String型の変数)

Ex2. Integer.parseInt(str)

Integerクラスに定義されている「parseInt」というメソッドを呼び出し
(strはStringクラスのオブジェクト = String型の変数)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 30

メソッドの定義
クラスに関連づけるメソッドとオブジェクトに関連づけるメソッドの2種類

(内容の定義はこれまでと全く同じ)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 31

public static 戻り値のデータ型 メソッド名(引数) {
メソッドでの処理内容
return 処理結果;

}

クラスに関連づけるメソッドの定義のテンプレート

public 戻り値のデータ型 メソッド名(引数) {
メソッドでの処理内容
return 処理結果;

}

オブジェクトに関連づけるメソッドの定義のテンプレート

違い: 「static」キーワードが
ついているかいないか

「static」のあるなし(1)
「static」がついているメソッド(クラスメソッド)

これまで作ってきたメソッド

「クラス名.メソッド」の形式で呼び出し可能(「オブジェクト名.メソッド」の形式でも
可能)

staticつきのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドにもstaticが必要

mainメソッドから呼び出すときは、「static」がついている必要

メソッドを定義しているクラスのインスタンス変数を利用することは不可能
(クラス変数は利用可能)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 32

オブジェクトによって処理結果の変わらないメソッドはstaticをつけて良い
(つけないメソッドにしても良い)

「static」のあるなし(2)
「static」がついていないメソッド(インスタンスメソッド)

必ず「オブジェクト名.メソッド」の形式で呼び出し(「クラス名.メソッド」の形式では
呼び出し不可能)

staticなしのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドはstaticはついていても、ついていなくても良い

staticなしのメソッド内部で、同じクラスで定義されているフィールドは、
インスタンス変数・クラス変数とも利用可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 33

オブジェクトによって処理結果の変わるメソッド(同じクラスで定義されているstaticなしの
フィールドを処理に使うなど)は、必ずstaticなし

mainメソッド
「この部分を最初に実行する」という意味のメソッド

クラスメソッドの一種

「public static void main(String[] args) {」のメソッド

Javaでは、プログラムを実行したときに、まず最初にmainメソッドの「{」と「}」の間
に書かれている処理を実行

複数のクラス作成するときは、mainメソッドを作成するのは1つのクラスのみ

複数のクラスを使ってプログラムを実行するときは、「java」コマンドで指定するクラスは、
メインメソッドを持っているクラス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 34

オブジェクト同士でのメソッドの呼び出し
あるクラス(名前: ClassA)で定義されているメソッドを...

別のクラスから呼び出す場合

同じクラス(ClassA)から呼び出す場合: 「オブジェクト名.」や「クラス名.」は不要

メソッド名 + 引数のみでOK

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 35

メソッドがインスタンスメソッドの場合: ClassAのオブジェクト名.メソッド

メソッドがクラスメソッドの場合: ClassA.メソッド

メソッドの呼び出し(例)(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 36

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

※クラス変数は、宣言と同時に値を代入してOK

メソッドの呼び出し(例)(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 37

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

インスタンスメソッドの定義

インスタンスメソッドの呼び出し

メソッドの呼び出し(例)(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 38

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

クラスメソッドの定義

クラスメソッドの呼び出し

継承

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 40

継承～「クラス」の親子関係～(1)
「本」クラスの他に、「雑誌」クラスを考えると...

「雑誌」クラスは「本」クラスの一部

「雑誌」は「本」でもある(「雑誌」は、「本」の少し細かい分類での名前)

「雑誌」クラスは、「タイトル」や「著者」などの「本」クラスと同じ属性(フィールド)を持つ

「雑誌」クラスは、「データを見せる」、「貸し出し処理をする」などの「本」クラスと
同じ操作(メソッド)を持つ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 41

「雑誌」クラスは「本」クラスの性質(属性と操作)を
そのまま持っている(受け継いでいる)

あるクラスが別のクラスの性質を受け継いでいるという関係が、
「クラスの親子関係」

継承～「クラス」の親子関係～(2)
継承: あるクラスが、別のクラスの属性と操作をそのまま受け継いで
いるという関係

受け継がせる側: 親クラス(スーパークラス)

受け継ぐ側: 子クラス(サブクラス)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 42

雑誌(子クラス)

タイトル
著者
巻数・号数

データを見せる
貸し出し処理をする
返却処理をする
新刊の棚に1ヶ月置く

本(親クラス)

タイトル
著者

データを見せる
貸し出し処理をする
返却処理をする

受け継ぐ

受け継ぐ

継承の使い方～拡張～
クラスAの様々なバリエーションを作りたい場合

クラスAを親クラスとして、子クラスB, Cを作る

クラスBに、Bのための独自の属性や操作を持たせる

クラスCに、Cのための独自の属性や操作を持たせる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 43

クラスA, B, Cに共通な属性・操作と、クラスB, C独自の
属性・操作を明確に分離できるので、保守性が良くなる

クラスB, C独自の属性や操作をクラスAにまとめて持たせると、クラスAが大きくなって保守性が悪くなる

機能などの変更のときに、どの部分を修正すれば
良いかがわかりやすくなる

継承の使い方～拡張～(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 44

雑誌(親クラス: 「本」)

タイトル
著者
巻数・号数

データを見せる
貸し出し処理をする
返却処理をする
新刊の棚に1ヶ月置く

専門書(親クラス: 「本」)

タイトル
著者
専門分野

データを見せる
貸し出し処理をする
返却処理をする
関係学科に入荷の通知をする

「専門書」クラスにのみ必要
(親クラスからの拡張部分)

「雑誌」クラスにのみ必要
(親クラスからの拡張部分)

親クラス(「本」クラス)から継承した属性と操作(「専門書」・「雑誌」にも
必要な共通の属性と操作, 「専門書」・「雑誌」クラスでは定義不要)

継承の使い方～抽象化～
共通の属性や操作を持つ複数のクラスの共通部分のみをまとめたい
場合

クラスB, Cの共通の属性と操作をまとめてクラスAを作る

クラスAがクラスB, Cの親クラス

クラスB, CがクラスAの子クラス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 45

共通の部分が1箇所にまとまるので、保守性が良くなる

共通の属性や操作をそれぞれのクラスで持っていると、共通部分を
変更するとそれぞれのクラスを同じように修正する必要が出てくる

共通する属性や操作を「親クラス」としてまとめると、
共通部分の変更は親クラスのみの修正ですむ

継承の使い方～抽象化～(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 46

雑誌

タイトル
著者
巻数・号数

データを見せる
貸し出し処理をする
返却処理をする
新刊の棚に1ヶ月置く

専門書

タイトル
著者
専門分野

データを見せる
貸し出し処理をする
返却処理をする
関係専攻に入荷の通知をする

「専門書」クラスと「雑誌」クラスで共通の属性と操作

まとめて「本」クラスを作成すると、変更があっても
対処しやすい

継承の使い方～その他～
子クラスのオブジェクトは、親クラスのオブジェクトとして扱うことも可能

「専門書」クラスのオブジェクトは、「本」クラスのオブジェクトとしても扱うことが可能

「専門書」・「雑誌」などの区別に関係なく共通の処理をしたい場合には、「本」クラスの
オブジェクトとして扱う

「専門書」・「雑誌」などで別々の処理をしたい場合には、それぞれのクラスの
オブジェクトとして扱う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 47

共通の処理をしたい場合には、子クラスごとに処理を
記述する必要がない

プログラムでの継承の表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 48

継承のしかた
クラス宣言を記述するときに、クラス名の後に「extends 親クラス名」と
書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 49

import java.io.*;
import java.lang.*;

public class Magazine extends Book {
int volume, number;

public int getVolume() {
return volume;

}
}

クラス名
(子クラス)

継承するクラス名
(親クラス名)

通常のクラスと、
書く内容は同じ

継承すると...(1)
親クラスに定義されているフィールドやメソッドが、子クラスでも自動的に
定義されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 50

public class Magazine extends Book {
int volume, number;

String title, author;

public String getTitle() {
return title;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Magazine mag = new Magazine();

mag.title = "今週の東女生";
mag.author = "東京子";

String magTitle = mag.getTitle();
}

}

Bookクラスに定義されているものを継承
 定義しているのはBookクラスにおいてのみ
 Magazineクラスでは実際には記述なし

継承

public class Magazine extends Book {
int volume, number;

}

実際のMagagineクラスの記述

継承すると...(2)
親クラスに定義されているフィールドやメソッドが、子クラスでも自動的に
定義されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 51

public class Magazine extends Book {
int volume, number;

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Magazine mag = new Magazine();

mag.title = "今週の東女生";
mag.author = "東京子";

String magTitle = mag.getTitle();
}

}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

Bookクラスに定義されているものを継承
 定義しているのはBookクラスにおいてのみ
 Magazineクラスでは実際には記述なし

継承

継承すると...(3)
親クラスに定義されているフィールドやメソッドが、子クラスでも自動的に
定義されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 52

public class Magazine extends Book {
int volume, number;

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Magazine mag = new Magazine();

mag.title = "今週の東女生";
mag.author = "東京子";

String magTitle = mag.getTitle();
}

}

Magazineクラスに定義
していなくても利用可能

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

継承

Magazineクラスに定義
していなくても利用可能

オーバーライド

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 53

オーバーライド
親クラスが持っている操作(メソッド)の処理の内容を子クラスで定義
しなおすこと

親クラスが持っている操作(メソッド)は、原則子クラスにそのまま継承
(子クラスで全く同じ処理内容で継承)

子クラスで、親クラスとは違う内容にしたい場合に定義しなおすことが可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 54

親クラスで定義されているメソッドを、
同じ名前と同じ引数、同じ戻り値で、子クラスで定義しなおすこと

オーバーライド(例)
「雑誌」クラスでは、雑誌名と巻数を組み合わせて「データを見せる」
メソッドの戻り値とする

「データを見せる」メソッドの処理内容を「本」クラスとは違う処理に定義

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 55

本

タイトル
著者

データを見せる
貸し出し処理をする

雑誌

タイトル
著者
巻数・号数

データを見せる
貸し出し処理をする

オーバーライド(同じ名前、
同じ引数、同じ戻り値で
処理内容を違うものに定義)

プログラムでのオーバーライドの表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 56

オーバーライドするには...
親クラスに定義されているフィールドやメソッドが、子クラスでも自動的に
定義されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 57

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

継承

オーバーライド
 同じメソッド名
 同じ引数
 同じ戻り値のデータ型

で、メソッドの処理内容を定義しなおし

ポリモーフィズム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 58

ポリモーフィズム(多相性, 多態性)
同じ名前の操作(メソッド)を異なる形にして呼び出すこと

オーバーライドなどによって実現

ソフトウェアの実行時になって初めてどの処理が呼び出されるか決定(動的結合)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 59

 操作の呼び出し側は、どのクラスのオブジェクトの操作を呼び出しているかを
意識しなくてすむ

 操作を呼び出した結果は、それぞれの処理内容に応じたものになっている

呼び出す操作の内容が違っても、呼び出し側の
処理が共通化できる

ポリモーフィズム(例)(1)
BookクラスのgetTitleメソッドは、本のタイトルがそのまま戻り値

オーバーライドにより、MagazineクラスのgetTitleメソッドは、雑誌の
タイトル+巻・号数が戻り値

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 60

ポリモーフィズム(例)(2)
子クラスのオブジェクトは、親クラスのオブジェクトとして扱うことも可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 61

public class Magazine extends Book {
... 略 ...

}

public class Book {
... 略 ...

}

public class Library {
public static void main(String[] args) {

try {
String line;
Book entry[] = new Book[100];
FileReader fr = new FileReader("BookDatabase.csv");
BufferedReader br = new BufferedReader(fr);

while (br.ready()) {
line = br.readLine();
if (line.indexOf("Book") == 0) {

entry[i] = new Book();
} else {

Magagine mag = new Magagine();
entry[i] = mag

}
}

}
catch(IOException e) {
}

}
}

Bookクラスのオブジェクトを作成し、
Bookクラスの配列に代入

Magazineクラスのオブジェクトを
作成し、Bookクラスの配列に代入

(このような処理をしてもOK)

ポリモーフィズム(例)(2)
子クラスのオブジェクトは、親クラスのオブジェクトとして扱うことも可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 62

public class Library {
public static void main(String[] args) {

try {
String line;
Book entry[] = new Book[100];
FileReader fr = new FileReader("BookDatabase.csv");
BufferedReader br = new BufferedReader(fr);

while (br.ready()) {
line = br.readLine();
if (line.indexOf("Book") == 0) {

entry[i] = new Book();
} else {

Magagine mag = new Magagine();
entry[i] = mag

}
}

}
catch(IOException e) {
}

}
}

public class Magazine extends Book {
... 略 ...

}

public class Book {
... 略 ...

}

MagazineクラスのオブジェクトもBook
クラスのオブジェクトとして扱うことができる

ポリモーフィズム(例)(3)
本のタイトルを調べるとき…

ただの本を調べる?

雑誌を調べる?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 63

そのときどきによって違う
=プログラムの実行時にしかわからない
=プログラムを作るときには決められない

 BookクラスもMagazineクラスもgetTitleメソッドを所有
 MagazineクラスはBookクラスの子クラス

ただの本のタイトルを調べるときも、雑誌のタイトルを調べるときも、
どちらもBookクラスのオブジェクトとして扱えば…?

Ex. ファイルから何冊もの本の情報を読み込んだとき
Bookクラスの配列に1冊ずつ情報を格納

→配列の何番目はただの本で、何番目が雑誌かは、プログラム作成時にはわからない

ポリモーフィズム(例)(4)
プログラムを作るとき

BookクラスのオブジェクトのgetTitleメソッドを呼び出すように、プログラムを記述

プログラムを実行するとき

プログラムは、オブジェクトがMagazineの場合、MagazineのgetTitleメソッドを
呼び出し

雑誌のタイトル+巻数・号数という戻り値が返される

プログラムは、オブジェクトがBookの場合、BookのgetTitleメソッドを呼び出し

タイトルがそのまま戻り値として返される

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 64

プログラムを作るときの処理の記述を簡単にできる
(本来は、それぞれで場合分けをして記述する必要がある)

プログラムでのポリモーフィズムの表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 65

ポリモーフィズムするには...(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 66

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

継承
public class Library {

public static void main(String[] args) {
Book enrty[] = new Book[100];
.... 略
int i;
for (i = 0; i < 100; i++) {

System.out.println(entry[i].getTitle());
}

}
}

ポリモーフィズムするには...(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 67

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Book enrty[] = new Book[100];
.... 略
int i;
for (i = 0; i < 100; i++) {

System.out.println(entry[i].getTitle());
}

}
}

 ファイルから本の情報を読み込むなどしている
 配列entryには、Bookクラスのオブジェクトと

Magazineクラスのオブジェクトが入り混じっている

entry[0] = new Book();
entry[0].title = "Javaプログラミング";
entry[0].author = "東京子";

Magazine mag = new Magazine();
mag.title = "月間オブジェクト指向";
mag.volume = 10;
mag.number = 5;
entry[1] = mag;
…

例

※子クラスのオブジェクトは、一旦子クラスの変数を
用意して値を設定し、その後親クラスの変数に代入
(でないと子クラスならではのフィールドに値を設定できない)

ポリモーフィズムするには...(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 68

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Book enrty[] = new Book[100];
.... 略
int i;
for (i = 0; i < 100; i++) {

System.out.println(entry[i].getTitle());
}

}
}

オーバーライド
 同じメソッド名
 同じ引数
 同じ戻り値のデータ型

で、メソッドの処理内容を定義しなおし

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Book enrty[] = new Book[100];
.... 略
int i;
for (i = 0; i < 100; i++) {

System.out.println(entry[i].getTitle());
}

}
}

ポリモーフィズムするには...(4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 69

実行時: 配列entryにBookクラスのオブジェクトが入っているときに呼び出される

実行時: 配列entryにMagazineクラスのオブジェクトが入っているときに呼び出される

やってみよう!(1)
スライドp. 61・p. 67のプログラムを写して、標準出力の結果が本当に
違うかどうか確認すること

配列の個数は5個程度で、プログラム内でタイトルや巻・号数を代入すること

ファイル入力ではなく、プログラム内で値を入力して良い

配列の1つ1つの要素で、BookクラスのオブジェクトとMagazineクラスの
オブジェクトを作り分けること

Ex. 配列の0番目はBookクラス、1番目はMagazineクラス、2番目はBookクラス、...の
ように分けること

Ex. MagazineクラスのオブジェクトのBookクラスへの代入方法

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 70

Magazine mag = new Magazine();
mag.title = "今週の東女生";
mag.volume = 1;
entry[3] = mag;

やってみよう!(2)
以下の3つのクラスを持つプログラムを作ること

1つ目: 授業の資料のページの「NumberContents.java」をダウンロード

2つ目: NumerContentsクラスを継承したクラス

3つ目: 下記の処理をするクラス

標準入力で2つの数を入力し、2つ目のクラスのフィールドに代入

2つ目のクラスで継承しているcalculateメソッドを使い、入力した数の合計を
標準出力で出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 71

2つ目のクラスには、calculateメソッドを定義していないはずなのに、
calculateメソッドを使って合計を計算できるかを確認すること

やってみよう!(3)
以下の3つのクラスを持つプログラムを作ること

1つ目: 授業の資料のページの「NumberContents.java」をダウンロード

2つ目: NumberContentsクラスを継承し、calculateメソッドを
オーバーライドしたクラス

オーバーライド内容: 戻り値を2つのフィールドの数の掛け算とするように変更

3つ目: 下記の処理をするクラス

標準入力で2つの数を入力し、2つ目のクラスのフィールドに代入

2つ目のクラスでオーバーライドしたcalculateメソッドを使うこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 72

オーバーライドすることにより、NumberContentsのcalculateメソッドと違う結果(掛け算)が出る
(ポリモーフィズムがきちんとできている)ことを確認すること

やってみよう!(4)
下記の3つのクラスを持つプログラム

1つ目: 授業のページの「StringModification.java」をダウンロード

2つ目: 1つ目のクラスを継承したクラス

オーバーライド内容
 引数: int型の数を2つ(mとn)

 戻り値: 「m番目の文字はx、n番目の文字はyです」という文字列(xとyはcharAtメソッドを使って
調べること)

3つ目: 下記の処理をするクラス

標準入力で入力した文字列を、2つ目のクラスの「text」というフィールド変数に代入

2つ目のクラスで継承しているlengthメソッドを使い、入力した文字列の長さを標準出力で
出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 73

2つ目のクラスには、lengthメソッドを定義していないはずなのに、
lengthメソッドを使って長さを調べることができるかを確認すること

やってみよう!(5)
下記の3つのクラスを持つプログラム

1つ目: 授業のページの「StringModification.java」をダウンロード

2つ目: 1つ目のクラスを継承し、substringメソッドをオーバーライドしたクラス

オーバーライド内容
 引数: int型の数を2つ(mとn)

 戻り値: 「m番目の文字はx、n番目の文字はyです」という文字列(xとyはcharAtメソッドを使って
調べること)

3つ目: 下記の処理をするクラス

標準入力で入力した文字列を、2つ目のクラスの「text」というフィールド変数に代入

2つ目のクラスでオーバーライドしたsubstringメソッドを使うこと
 引数mとnも、標準入力で入力すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 74

オーバーライドすることにより、これまで使ってきたsubstringメソッドと
違う結果が出る(ポリモーフィズムがきちんとできている)ことを確認すること

