
情報処理技法
(Javaプログラミング)2

第7回
メッセージ

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 1

第7回の内容
 オブジェクト指向におけるメソッド

 メッセージ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 2

前回の出席課題の回答
 アルゴリズムの良し悪しに関して、下記の文章の(ア)～(オ)を埋めなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 3

(ア) 計算量
(イ) 多項式時間
(ウ) 指数時間

解答例:

アルゴリズムの速さは、コンピュータで実行したときの秒・分単位の時間的な速さではなく、
(ア)で表現される。(ア)は、アルゴリズムを実行する際の基本処理の回数である。アルゴリズムで
扱うデータの個数を「N」として、N2やN3などの計算を必要とするアルゴリズムを(イ)アルゴリズム、
N!や2Nなどの計算を必要とするアルゴリズムを(ウ)アルゴリズムと呼ぶ。

速いアルゴリズムとわかりやすいアルゴリズムの関係は以下の通りである。
 速いアルゴリズムは(エ)アルゴリズムである。
 (オ)アルゴリズムは遅いアルゴリズムである。

(エ) わかりにくい
(オ) わかりやすい

前回の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 5

クラスとオブジェクト(1)
 クラス

実物を分類したカテゴリ(実物の総称のような概念)

名前を示されたとき、その概念にあてはまるものがいくつか存在するもの

 オブジェクト

 1つ1つの具体的な実物
名前を示されたとき、「これ」とそのものを特定できるもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 6

人や物を、持っている情報によって分類したもの
Ex. 東京女子大学の学生

「クラス」の分類に当てはまる、具体的な人や物
Ex. 東京女子大学の学生の東京子さん

クラスとオブジェクト(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 7

「学生」というカテゴリ(クラス)に分類

「本」というカテゴリ(クラス)に分類

図書館蔵書ID 0002:
マーチン・ファウラー著, 羽生田栄一監訳:
UMLモデリングのエッセンス, 翔泳社

図書館蔵書ID 0001:
児玉公信著: UMLモデリングの本質,
日経BP社 実物の本 =オブジェクト

学生番号 k14x1001: 東京子

学生番号 k13x1001: 善福寺花子
実物の学生 =オブジェクト

クラスとオブジェクト(3)
 クラス: 同じ属性と操作を持つオブジェクトの集合

属性(フィールド):オブジェクトが持つ情報(データ)

操作(振る舞い, メソッド): オブジェクトが担当する処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 8

学生

学生番号
住所
成績

授業に出席する
レポートを書く

本

タイトル
著者

データを見せる
貸し出し処理をする
返却処理をする

犬

名前
飼い主

遊ぶ
寝る
えさを食べる

クラス名 属性(フィールド) 操作(メソッド)

クラスの例

クラスとオブジェクト(4)
 1つのクラスにオブジェクトを所属させることができる

 クラス: 実物を分類したカテゴリのようなもののため

 オブジェクト同士は、それぞれのクラスに定義された操作(処理)を
呼び出す

操作(処理)の呼び出しを「メッセージ」と呼ぶ

 メッセージを組み合わせてオブジェクト同士がコミュニケーションすることで
プログラム全体が成り立つ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 9

属性・操作・メッセージ(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 10

利用者

タイトル
著者
出版社

持っているデータ

自分のデータを見せる
貸し出し処理をする
返却処理をする

担当する処理

本

「あなた(本)を貸して」と
お願いする(処理を呼び出す)

メッセージ

クラス

属性
(フィールド)

操作(振る舞い,
メソッド)

プログラムでのクラスとオブジェクト

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 11

プログラムでしなければならないこと
1.クラスを定義する

 それぞれの「もの」について、内容を定義する
どのような名前か?
どのような情報(属性)を持っているか?
どのような操作(メソッド)を持っているか?

2.オブジェクトを作る
 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する
 2. で作ったオブジェクトに、具体的なデータを設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 12

原則
 データを定義するためのクラス(Javaファイル)を1つ作成

処理のクラスとは別に作成

 処理をするためのクラス(Javaファイル)を1つ作成
 データ定義のクラスとは別に作成

 処理のクラスの中で、データ定義のクラスのオブジェクトを作成

 処理のクラスの中に、オブジェクトを使って、様々な処理を記述

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 13

1. クラスの定義のしかた
 これまでと同じ

 1ファイル1クラス
 オブジェクトが持つデータ(フィールド)を変数として宣言

どのメソッドにも含まれない場所で宣言

 オブジェクトが担当する処理(メソッド)を定義

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 14

import java.io.*;
import java.lang.*;

public class Student {
String address, name, tel;
int studentNumber, english, math, language;

}

クラス名

フィールドの宣言

メソッドの定義

プログラムでしなければならないこと
1.クラスを定義する

 それぞれの「もの」について、内容を定義する
どのような名前か?
どのような情報(属性)を持っているか?
どのような操作(メソッド)を持っているか?

2.オブジェクトを作る
 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する
 2. で作ったオブジェクトに、具体的なデータを設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 15

2. オブジェクトの作り方
 「new クラス名()」でオブジェクトを作成し変数に代入

 この作成・代入処理は、1. のクラスとは別のクラスのメソッド内で行う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 16

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();

}
}

「Student」クラスの
変数(オブジェクト名)を宣言

オブジェクトの作成と
変数への代入

「オブジェクトを作る」とは?
 具体的な情報が何も設定されていない、情報の入れ物を作る、という
イメージ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 17

new Student()

address:
studentNumber:
english:
math:
language:

address:
studentNumber:
english:
math:
language:

出席番号1番の生徒

出席番号2番の生徒

オブジェクト作成

オブジェクト作成

具体的な値は何もなし

「オブジェクト」が複数ある場合
 高校の生徒: 何人も存在

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 18

オブジェクトを配列またはArrayListにする

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();

}
}

StudentManage.java

これだと、1人分の情報だけ

複数のオブジェクトの扱い～配列～(1)
 オブジェクト: プログラムでの表記は変数と同じ

= これまでのintやStringと同様に配列の宣言が可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 19

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
.......
info[0] = new Student();
info[1] = new Student();
.......

}
} 「Student」クラスの

オブジェクトを50個分宣言

複数のオブジェクトの扱い～配列～(2)
 これまでと同様、「オブジェクト名[添え字] = new クラス名();」で作成

配列で扱う個々のオブジェクトの作成を忘れないこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 20

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
.......
info[0] = new Student();
info[1] = new Student();
.......

}
}

オブジェクトを1つ1つ作成(for文や
while文でまとめて作成してもOK)

[]と()の違いに注意!
 []: 配列を表す

 Student info[] = new Student[30];
←変数「info」を、Studentクラスの30個の要素を持つ配列として宣言

 Student info = new Student();
←変数「info」に、Studentクラスの変数として宣言し、オブジェクトを代入

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 21

Student[] info = new Student[30]; // infoを30個の要素を持つ配列として宣言
info[0] = new Student(); // info[0]にオブジェクトを代入
info[1] = new Student(); // info[1]にオブジェクトを代入
...

「new Student...」と書いていても、意味が全く違うので注意!
 オブジェクトを配列にするときは、配列としての宣言と、
各要素へのオブジェクトの代入が必要

プログラムでしなければならないこと
1.クラスを定義する

 それぞれの「もの」について、内容を定義する
どのような名前か?
どのような情報(属性)を持っているか?
どのような操作(メソッド)を持っているか?

2.オブジェクトを作る
 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する
 2. で作ったオブジェクトに、具体的なデータを設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 22

オブジェクトの利用(値の代入と参照)(1)
 オブジェクトの作成後、フィールドに値を代入可能

 「オブジェクト名.フィールド名」で普通の変数と同様に扱う
 「new」として、オブジェクトを作成したクラスのメソッド内で、「オブジェクト名.フィールド名」と
いう変数を利用できる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 23

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();
info.address="2-6-1, Suginamiku...";
info.studentNumber=1;
info.english=80;

}
}

フィールドに
値を代入

オブジェクトの利用(値の代入と参照)(2)
 「オブジェクト名.フィールド名」で、「フィールド名」として使えるのは

1. で定義したクラスのフィールドの変数
 「オブジェクト名.フィールド名」で、「オブジェクト」「の(.)」「フィールド名」という意味

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 24

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();
info.address="2-6-1, Suginamiku...";
info.studentNumber=1;
info.english=80;

}
}

public class Student {
String address, name, tel;
int studentNumber, english, math, language;

}

StudentManage.java

Student.java

オブジェクトの配列化～代入～(1)
 「オブジェクト名[添え字].フィールド名」で、通常の変数と同様に扱う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 25

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
.......
info[0] = new Student();
.......
info[0].address="2-6-1, Suginamiku...";
info[0].studentNumber=1;
info[0].english=80;
.......

}
}

オブジェクトのフィールドに1つ1つ値を代入

オブジェクトの配列化～代入～(2)
 「配列の要素.フィールド名」で、個々のオブジェクトの情報を表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 26

住所: info[0].address
出席番号: info[0].studentNumber
英語の得点: info[0].english
数学の得点: info[0].math
国語の得点: info[0].language

住所: info[1].address
出席番号: info[1].studentNumber
英語の得点: info[1].english
数学の得点: info[1].math
国語の得点: info[1].language

出席番号1番の生徒(info[0])

出席番号2番の生徒(info[1])

処理クラスの中で
変数として利用

オブジェクトの配列化～代入～(2)
 フィールドに値を入れることにより、各オブジェクトの固有のデータが設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 27

public class StudentManage {
public static void main(String[] args) {

.......
info[0].address="2-6-1, Suginamiku...";
info[0].studentNumber=1;
info[0].english=80;
.......
info[1].address="1-1-1, Kichijoji...";
info[1].studentNumber=2;
info[1].english=93;

}
}

address: 2-6-1, Suginamiku...
studentNumber: 1
english: 80
math:
language:

address: 1-1-1, Kichijoji...
studentNumber: 2
english: 93
math:
language:

出席番号1番の生徒

出席番号2番の生徒

オブジェクトの配列化～利用～
 オブジェクトを配列にしたときも、添え字の考え方はこれまでと全く同じ

添え字は0から数え始める
 0～[宣言した数-1]の番号の添え字を利用できる

 ..., -3, -2, -1や、[宣言した数], [宣言した数+1], [宣言した数+2], ...は使えない

高校の生徒などの場合、添え字と出席番号を対応させると扱いやすい
 Ex. 出席番号1番の生徒は添え字0, 出席番号2番の生徒は添え字1, ...

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 28

クラスと配列のオブジェクトのイメージ
 クラス作成～フィールドへの値の代入は、個人情報の入力シートの
作成をして、シートに入力するまでの流れのイメージ

 クラス作成: 個人情報の入力シートの作成
 オブジェクトの変数(配列)宣言: コピー機に用紙をセット
 オブジェクトの作成(配列): コピー機で個人情報の入力シートをコピー
 フィールドに値を代入: 1人1人がシートに記入

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 29

クラス作成
(入力シート作成) 用紙をセット

入力シートを
コピー 入力シートに記入

メッセージのやり取り

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 30

メッセージ
 メッセージ = あるクラスで定義されたメソッドを呼び出すこと
 「オブジェクト名.メソッド」(または「クラス名.メソッド」)の形式で呼び出し

 ただし、メソッドを定義している同じクラス内で呼び出すときは、オブジェクト名や
クラス名は省略

 Ex1. str.substring(m, n)
 Stringクラスに定義されている「substring」というメソッドを呼び出し

(strはStringクラスのオブジェクト = String型の変数)

 Ex2. Integer.parseInt(str)
 Integerクラスに定義されている「parseInt」というメソッドを呼び出し

(strはStringクラスのオブジェクト = String型の変数)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 31

メッセージのやり取りをするには
1.各クラスでメソッドを定義する
2.オブジェクト同士でメソッドを呼び出しあう

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 32

メソッドの定義
 クラスに関連づけるメソッドとオブジェクトに関連づけるメソッドの2種類

(内容の定義はこれまでと全く同じ)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 33

public static 戻り値のデータ型 メソッド名(引数) {
メソッドでの処理内容
return 処理結果;

}

クラスに関連づけるメソッドの定義のテンプレート

public 戻り値のデータ型 メソッド名(引数) {
メソッドでの処理内容
return 処理結果;

}

オブジェクトに関連づけるメソッドの定義のテンプレート

違い: 「static」キーワードが
ついているかいないか

「static」のあるなし(1)
 「static」がついているメソッド(クラスメソッド)

 これまで作ってきたメソッド

 「クラス名.メソッド」の形式で呼び出し可能(「オブジェクト名.メソッド」の形式でも
可能)

 staticつきのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドにもstaticが必要
 mainメソッドから呼び出すときは、「static」がついている必要

 メソッドを定義しているクラスのインスタンス変数を利用することは不可能
(クラス変数は利用可能)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 34

オブジェクトによって処理結果の変わらないメソッドはstaticをつけて良い
(つけないメソッドにしても良い)

「static」のあるなし(2)
 「static」がついていないメソッド(インスタンスメソッド)

必ず「オブジェクト名.メソッド」の形式で呼び出し(「クラス名.メソッド」の形式では
呼び出し不可能)

 staticなしのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドはstaticはついていても、ついていなくても良い

 staticなしのメソッド内部で、同じクラスで定義されているフィールドは、
インスタンス変数・クラス変数とも利用可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 35

オブジェクトによって処理結果の変わるメソッド(同じクラスで定義されているstaticなしの
フィールドを処理に使うなど)は、必ずstaticなし

mainメソッド
 「この部分を最初に実行する」という意味のメソッド

 クラスメソッドの一種
 「public static void main(String[] args) {」のメソッド

 Javaでは、プログラムを実行したときに、まず最初にmainメソッドの「{」と「}」の間に書
かれている処理を実行
複数のクラス作成するときは、mainメソッドを作成するのは1つのクラスのみ
複数のクラスを使ってプログラムを実行するときは、「java」コマンドで指定するクラスは、
メインメソッドを持っているクラス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 36

オブジェクト同士でのメソッドの呼び出し
 あるクラス(名前: ClassA)で定義されているメソッドを...

別のクラスから呼び出す場合

同じクラス(ClassA)から呼び出す場合: 「オブジェクト名.」や「クラス名.」は不要
 メソッド名 + 引数のみでOK

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 37

メソッドがインスタンスメソッドの場合: ClassAのオブジェクト名.メソッド

メソッドがクラスメソッドの場合: ClassA.メソッド

メソッドの定義とメッセージでの処理の流れ(例)(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 38

// 商品の値段管理
public class Product {
int price;

// 商品の金額計算(discount: 割引率, tax: 税率)
public int calcAmount(double discount, double tax) {
double doubleAmount;
int intAmount;

doubleAmount = (double) price * (1 - discount) * (1 + tax);
intAmount = (int) doubleAmount;
return intAmount;

}
}

メソッドの定義
// 割引率と税率を設定して、商品の金額計算
public class ProductManage {

public static void main(String[] args) {
int amount;

Product pro = new Product();
// 割引率: 0.2 (2割引)
amount = pro.calcAmount(0.2, 0.08);

}
}

ProductManages.java Product.java

メソッドの定義とメッセージでの処理の流れ(例)(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 39

// 商品の値段管理
public class Product {
int price;

// 商品の金額計算(discount: 割引率, tax: 税率)
public int calcAmount(double discount, double tax) {
double doubleAmount;
int intAmount;

doubleAmount = (double) price * (1 - discount) * (1 + tax);
intAmount = (int) doubleAmount;
return intAmount;

}
}

// 割引率と税率を設定して、商品の金額計算
public class ProductManage {

public static void main(String[] args) {
int amount;

Product pro = new Product();
// 割引率: 0.2 (2割引)
amount = pro.calcAmount(0.2, 0.08);

}
}

ProductManages.java Product.java

引数には具体的な値または変数を書く
(引数の順番は、メソッドを作ったときの順番と同じに)

calcAmountというメソッドを呼び出す

メソッドの定義とメッセージでの処理の流れ(例)(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 40

// 商品の値段管理
public class Product {
int price;

// 商品の金額計算(discount: 割引率, tax: 税率)
public int calcAmount(double discount, double tax) {
double doubleAmount;
int intAmount;

doubleAmount = (double) price * (1 - discount) * (1 + tax);
intAmount = (int) doubleAmount;
return intAmount;

}
}

// 割引率と税率を設定して、商品の金額計算
public class ProductManage {
public static void main(String[] args) {
int amount;

Product pro = new Product();
// 割引率: 0.2 (2割引)
amount = pro.calcAmount(0.2, 0.08);

}
}

ProductManages.java Product.java

処理の流れ
1. mainメソッドで、calcAmountメソッドの引数に0.2と0.08を指定する
2. 指定された0.2と0.08というデータがcalcAmountメソッドの引数の変数「discount」と「tax」にそれぞれ代入される
3. calcAmountメソッド内で引数の値を使って計算され、変数intAmountに結果が代入される
4. calcAmountメソッドの変数intAmountの値がmainメソッドの変数amountに代入される

メソッドの呼び出し(例)(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 41

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

※クラス変数は、宣言と同時に値を代入してOK

メソッドの呼び出し(例)(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 42

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

インスタンスメソッドの定義

インスタンスメソッドの呼び出し

メソッドの呼び出し(例)(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 43

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

クラスメソッドの定義

クラスメソッドの呼び出し

コンストラクタ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 44

特殊なメソッド～コンストラクタ～(1)
 コンストラクタ: オブジェクトを作成すると同時に実行される特殊なメソッド
 通常のメソッドとの違い

名前が必ずクラス名と同じ

戻り値のデータ型の定義なし

戻り値を返すためのreturn文はなし
 「static」キーワードをつけることは不可

 通常のメソッドと同じもの

引数を定義(なくても良い)

処理内容の記述方法は同じ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 45

特殊なメソッド～コンストラクタ～(2)
 定義方法: 「public クラス名(引数のリスト) {...}」

引数のリストはなくてもよい

 「{」から「}」の間に、オブジェクトを作成すると同時に実行される処理内容を
記述する

 オブジェクトを作成するとき、「new クラス名() ;」とするのは、コンストラクタを
呼び出している、ということ

 コンストラクタでよく処理するもの

 フィールドの値の設定

 GUIを扱うクラスの場合、GUIのウィンドウの作成処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 46

コンストラクタの例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 47

同じ意味

public class Student {
String number, circle;
int score;
public Student(String n, int s, String c) {

number = n;
score = s;
circle = c;

}
}

クラスの定義

Student member;
member = new Student("k17x1001", 80, "オーケストラ");

Student member;
member = new Student();
member.number = “k17x1001”;
member.score = 80;
member.circle = "オーケストラ"

オブジェクト作成例

コンストラクタ

コンパイルと実行

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 48

コンパイルと実行のしかた
 コンパイル

 「javac」の後に、ファイル名をスペースでつなげて複数のファイルをコンパイル

 または、「*」でそのフォルダに保存されているJavaファイルすべてをコンパイル
プログラムに関係ないJavaファイルもコンパイルされる。関係ないJavaファイルに
コンパイルエラーがあれば、コンパイルが完了しないので注意

 実行

 「java」の後に、「public static void main」が書かれているファイル名
(拡張子なし)を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 49

% javac StudentManage.java Student.java

% java StudentManage

% javac *.java

やってみよう![1]
 下記の2つのクラスを持つプログラム

 1つ目のクラス: 生徒クラス
名前と出席番号、5教科の試験の得点を入れるフィールドを持つ
 5教科の平均点を計算し、戻り値とするメソッドを持つ

 2つ目のクラス: 処理クラス
生徒クラスのオブジェクトに5教科の試験の得点を設定する
生徒クラスのメソッドを使い、5教科の試験の平均点を計算する

 ケーキクラスを作成し、ケーキの名前と値段をコンストラクタの引数として
与え、コンストラクタの中でケーキの名前と値段をフィールドに代入する
プログラム

代入した結果を標準出力に出力すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 50

やってみよう![2]
 下記の2つのクラスを持つプログラムを作ること

 1つ目のクラス: 友達の情報を管理し、挨拶をするクラス
 フィールド: 友達の名前

 メソッド: 「こんにちはxxさん! 私はyyです。よろしくお願いします。」と標準出力で出力(xxは引
数として与え、yyはフィールドの値)
 引数: 自分の名前(xx)

 戻り値: なし

 2つ目のクラス: 1つ目のクラスのオブジェクトを作成し、メソッドを呼び出すクラス
自分の名前を標準入力で入力

 1つ目のクラスのオブジェクトを作成し、友達の名前を設定(標準入力などはしなくて良い)
 1つ目のクラスのメソッドを呼び出し
呼び出したメソッドの引数は、標準入力で入力した自分の名前

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 51

やってみよう![3]
 下記の2つのクラスを持つプログラムを作ること

 1つ目のクラス: おこづかい帳の収入と支出を管理するクラス
 フィールド: 収入の金額, 支出の金額(支出の金額は配列)
 メソッド: 収入に対する支出の割合を、パーセンテージで計算

 引数: なし
 戻り値: 計算したパーセンテージの数

 2つ目のクラス: 1つ目のクラスのオブジェクトを作成し、メソッドを呼び出すクラス
収入の金額と支出の金額を標準入力で入力

 収入は1つだけ入力
 支出は、「End」と入力されるまで、何回でも入力

 1つ目のクラスのオブジェクトを作成し、入力された収入と支出の金額を設定
 1つ目のクラスのメソッドを呼び出して、収入に対する支出の割合を計算し、標準出力で
出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 52

