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情報処理技法
(Javaプログラミング)2

第6回
オブジェクト指向って?

人間科学科コミュニケーション専攻

白銀純子
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 プログラミングの種類

 オブジェクト指向とは?

第6回の内容

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 3

 「アルゴリズム」とは何か、下記のキーワードを使って説明しなさい。

 キーワード: プログラム, 手順, 図

前回の出席課題の回答

解答例

アルゴリズムとは、ある問題を解決するときの手順のことである。箇条書きの文章で
書いたり、図を使って描くこともある。プログラムは、アルゴリズムをプログラミング言語で
表現したものである。
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 関数型言語

 手続き型

 オブジェクト指向言語

プログラミングの種類
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 数学的な関数のみをもとにして記述するプログラム言語

一度変数に値が与えられれば、その変数の値は変化しない

計算結果を引数とする、関数呼び出しのみで計算を行う

 プログラミング言語: Lisp, Schemeなど

関数型言語
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 記述された命令を上から順に実行していくプログラム言語

処理の結果に応じて変数の値が変化

 プログラミング言語: C言語, BASIC, Pascalなど

手続き型言語
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 「もの」と「もの」との関係に重点を置いて記述するプログラミング言語

 ある「もの」に対して、それが持つ情報と、その「もの」が行う作業を記述する

 ある「もの」と別の「もの」とのコミュニケーションを記述することで、プログラムを
動作させる

 プログラミング言語: SmallTalk, C++, C#など

オブジェクト指向言語

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 10

 オブジェクト指向言語

 これまでの言語にはない、完全なオブジェクト指向を実現した言語

 「Write Once, Run Anywhere」(一度記述すればどこでも動作する)が
キャッチコピー

一度記述すれば、OS等の環境が異なるコンピュータでもプログラムは動作する

他のプログラミング言語では、OS等が違うとコンパイル・実行ができないこともある

Javaは?

オブジェクト指向の基礎
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 オブジェクト指向: 「もの」を中心してソフトウェアを構築する考え方

 「もの」: オブジェクト(インスタンスとも)

 1つ1つの具体的な実物

名前を示されたとき、「これ」とそのものを特定できるもの

 「もの」の分類: クラス

実物を分類したカテゴリ(実物の総称のような概念)

名前を示されたとき、その概念にあてはまるものがいくつか存在するもの

オブジェクト指向

※「オブジェクト」と「インスタンス」は厳密にはちがうもの
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 Javaは、「クラス」というものを基本にして動作

 クラス: Javaプログラムを動作させるための基本単位

 XXの処理をするためのクラス

 XXのデータを定義するためのクラス

 etc.

 それぞれの役割を持ったクラスをたくさん作り、お互いに連携させることで
Javaのプログラムは動作

クラスって(1)?

これまで書いてきた
Javaプログラム

今回のクラス
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 「public  class  クラス名 {」でクラスの名前を指定

 Javaでは、原則として「クラス名」は、拡張子なし(「.java」なし)の
ファイル名にする
クラス名とファイル名は全く違うものにすることもできるが、原則として同じものにする

コンパイルすると、「クラス名.class」という名前のファイルができる

クラスって(2)?
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 異なる種類の情報をひとまとめにして扱うためのもの

データを定義するためのクラス

高校の生徒1人分の情報
String  name, address, tel;

int studentNumber, english, math, language, science, society;

これだけの情報を持った「クラス」を作る

一種のデータ型(ただし、「int」や「double」と違い、
内部で色々な情報を持っている)
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 プログラムで扱うデータについて、何がひとまとまりかを定義したもの

高校の生徒はどんな情報を持つ?

住所, 氏名, 電話番号, 所属クラス, 試験の成績, etc.

図書館の本はどんな情報を持つ?

タイトル, 著者, 出版社, 出版年, ID, etc.

「クラス」は情報の集合体

具体的なデータを持つのは「オブジェクト」

ただし! 「クラス」は、具体的なデータは持たない
 東京子さんの試験の成績は?

 図書館の蔵書ID 0001の本のタイトルは?

「これでひとまとまり」と定義
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 「クラス」とは、別の考え方をすれば、それぞれの人や物が
「どういう種類の情報を持っているか」を表すもの

「オブジェクト」って?

「Student」クラス(高校の生徒がどういう情報を持っているか)

出席番号1番の生徒(クラスA)

出席番号2番の生徒(クラスA)
......

出席番号1番の生徒(クラスB)

出席番号2番の生徒(クラスB)

「住所」や「氏名」などの情報の持ち主

=オブジェクト

オブジェクト: 実際に具体的な情報を
持っている人や物
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 クラス

実物を分類したカテゴリ(実物の総称のような概念)

名前を示されたとき、その概念にあてはまるものがいくつか存在するもの

 オブジェクト

 1つ1つの具体的な実物

名前を示されたとき、「これ」とそのものを特定できるもの

クラスとオブジェクト(1)

人や物を、持っている情報によって分類したもの
Ex. 東京女子大学の学生

「クラス」の分類に当てはまる、具体的な人や物
Ex. 東京女子大学の学生の東京子さん
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クラスとオブジェクト(2)

「学生」というカテゴリ(クラス)に分類

「本」というカテゴリ(クラス)に分類

図書館蔵書ID 0002:

マーチン・ファウラー著, 羽生田栄一監訳: 

UMLモデリングのエッセンス, 翔泳社

図書館蔵書ID 0001:

児玉公信著: UMLモデリングの本質, 

日経BP社 実物の本 =オブジェクト

学生番号 k14x1001: 東京子

学生番号 k13x1001: 善福寺花子
実物の学生 =オブジェクト
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 クラス: 同じ属性と操作を持つオブジェクトの集合

属性(フィールド):オブジェクトが持つ情報(データ)

操作(振る舞い, メソッド): オブジェクトが担当する処理

クラスとオブジェクト(3)

学生

学生番号
住所
成績

授業に出席する
レポートを書く

本

タイトル
著者

データを見せる
貸し出し処理をする
返却処理をする

犬

名前
飼い主

遊ぶ
寝る
えさを食べる

クラス名 属性(フィールド) 操作(メソッド)

クラスの例
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 1つのクラスにオブジェクトを所属させることができる

 クラス: 実物を分類したカテゴリのようなもののため

 オブジェクト同士は、それぞれのクラスに定義された操作(処理)を
呼び出す

操作(処理)の呼び出しを「メッセージ」と呼ぶ

 メッセージを組み合わせてオブジェクト同士がコミュニケーションすることで
プログラム全体が成り立つ

クラスとオブジェクト(4)
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属性・操作・メッセージ(例)

利用者

タイトル
著者
出版社

持っているデータ

自分のデータを見せる
貸し出し処理をする
返却処理をする

担当する処理

本

「あなた(本)を貸して」と
お願いする(処理を呼び出す)

メッセージ

クラス

属性
(フィールド)

操作(振る舞い, 

メソッド)

プログラムでのクラスとオブジェクト
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1.クラスを定義する

 それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2.オブジェクトを作る

 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する

 2. で作ったオブジェクトに、具体的なデータを設定

プログラムでしなければならないこと
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 データを定義するためのクラス(Javaファイル)を1つ作成

処理のクラスとは別に作成

 処理をするためのクラス(Javaファイル)を1つ作成

 データ定義のクラスとは別に作成

 処理のクラスの中で、データ定義のクラスのオブジェクトを作成

 処理のクラスの中に、オブジェクトを使って、様々な処理を記述

原則
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 これまでと同じ

 1ファイル1クラス

 オブジェクトが持つデータ(フィールド)を変数として宣言

どのメソッドにも含まれない場所で宣言

 オブジェクトが担当する処理(メソッド)を定義

1. クラスの定義のしかた

import  java.io.*;

import  java.lang.*;

public  class   Student  {

String  address, name, tel;

int studentNumber, english, math, language;

}

クラス名

フィールドの宣言

メソッドの定義
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 フィールドの変数に「static」というキーワードをつけて宣言することがある

 Ex1. static String schoolName;

 Ex2. static int classNumber;

 staticなしのフィールド(インスタンス変数)

 オブジェクトごとに値が異なるフィールドを表現するために利用

 Ex. 1人1人の生徒の住所や電話番号、試験の成績など

 staticつきのフィールド(クラス変数)

 どのオブジェクトも値が同じであるフィールドを表現するために利用

 Ex. 学校の名前など

「static」キーワード
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1.クラスを定義する

 それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2.オブジェクトを作る

 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する

 2. で作ったオブジェクトに、具体的なデータを設定

プログラムでしなければならないこと
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 「new クラス名()」でオブジェクトを作成し変数に代入

 この作成・代入処理は、1. のクラスとは別のクラスのメソッド内で行う

2. オブジェクトの作り方

public  class StudentManage {

public static void main(String[] args) {

Student  info;

.......

info = new  Student();

}

}

「Student」クラスの
変数(オブジェクト名)を宣言

オブジェクトの作成と
変数への代入
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 具体的な情報が何も設定されていない、情報の入れ物を作る、という
イメージ

「オブジェクトを作る」とは?

new Student()

address:

studentNumber: 

english: 

math: 

language: 

address:

studentNumber: 

english: 

math: 

language: 

出席番号1番の生徒

出席番号2番の生徒

オブジェクト作成

オブジェクト作成

具体的な値は何もなし

「オブジェクト」が複数ある場合

 高校の生徒: 何人も存在
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オブジェクトを配列またはArrayListにする

public  class StudentManage {

public static void main(String[] args) {

Student  info;

.......

info = new  Student();

}

}

StudentManage.java

これだと、1人分の情報だけ
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 オブジェクト: プログラムでの表記は変数と同じ
= これまでのintやStringと同様に配列の宣言が可能

複数のオブジェクトの扱い～配列～(1)

public  class StudentManage {

public static void main(String[] args) {

Student[]  info = new  Student[50];

.......

info[0] = new  Student();

info[1] = new  Student();

.......

}

} 「Student」クラスの
オブジェクトを50個分宣言
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 これまでと同様、「オブジェクト名[添え字] = new  クラス名();」で作成

配列で扱う個々のオブジェクトの作成を忘れないこと

複数のオブジェクトの扱い～配列～(2)

public  class StudentManage {

public static void main(String[] args) {

Student[]  info = new  Student[50];

.......

info[0] = new  Student();

info[1] = new  Student();

.......

}

}
オブジェクトを1つ1つ作成(for文や
while文でまとめて作成してもOK)
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 [ ]: 配列を表す

 Student  info[ ] = new  Student[30];

←変数「info」を、Studentクラスの30個の要素を持つ配列として宣言

 Student  info = new  Student( );

←変数「info」に、Studentクラスの変数として宣言し、オブジェクトを代入

[ ]と( )の違いに注意!

Student[ ]  info = new  Student[30];  // infoを30個の要素を持つ配列として宣言
info[0] = new  Student( );  // info[0]にオブジェクトを代入
info[1] = new  Student( );  // info[1]にオブジェクトを代入
...

「new Student...」と書いていても、意味が全く違うので注意!

 オブジェクトを配列にするときは、配列としての宣言と、
各要素へのオブジェクトの代入が必要
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 オブジェクト: ArrayListで扱うことも可能

複数のオブジェクトの扱い～ArrayList～(1)

public  class StudentManage {

public static void main(String[] args) {

ArrayList<Student> studentList = new ArrayList<Student>();

.......

Student info = new Student();

studentList.add(info);

.......

}

}
「Student」クラスのオブジェクトを
登録するためのArrayListの宣言
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 1つ1つオブジェクトを作成し、ArrayListに登録

複数のオブジェクトの扱い～ArrayList～(2)

public  class StudentManage {

public static void main(String[] args) {

ArrayList<Student> studentList = new ArrayList<Student>();

.......

Student info = new Student();

studentList.add(info);

.......

}

}
オブジェクトを1つ1つ作成(for文や
while文でまとめて作成してもOK)
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1.クラスを定義する

 それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2.オブジェクトを作る

 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する

 2. で作ったオブジェクトに、具体的なデータを設定

プログラムでしなければならないこと
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 オブジェクトの作成後、フィールドに値を代入可能

 「オブジェクト名.フィールド名」で普通の変数と同様に扱う

 「new」として、オブジェクトを作成したクラスのメソッド内で、「オブジェクト名.フィールド名」と
いう変数を利用できる

オブジェクトの利用(値の代入と参照)(1)

public  class StudentManage {

public static void main(String[] args) {

Student  info;

.......

info = new  Student();

info.address="2-6-1, Suginamiku...";

info.studentNumber=1;

info.english=80;

}

}

フィールドに
値を代入
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 「オブジェクト名.フィールド名」で、「フィールド名」として使えるのは
1. で定義したクラスのフィールドの変数

 「オブジェクト名.フィールド名」で、「オブジェクト」「の(.)」「フィールド名」という意味

オブジェクトの利用(値の代入と参照)(2)

public  class StudentManage {

public static void main(String[] args) {

Student  info;

.......

info = new  Student();

info.address="2-6-1, Suginamiku...";

info.studentNumber=1;

info.english=80;
}

}

public  class   Student  {

String  address, name, tel;

int studentNumber, english, math, language;

}

StudentManage.java

Student.java
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 「オブジェクト名[添え字].フィールド名」で、通常の変数と同様に扱う

オブジェクトの配列化～代入～(1)

public  class StudentManage {

public static void main(String[] args) {

Student[]  info = new  Student[50];

.......

info[0] = new  Student();

.......

info[0].address="2-6-1, Suginamiku...";

info[0].studentNumber=1;

info[0].english=80;

.......

}

}

オブジェクトのフィールドに1つ1つ値を代入

オブジェクトの配列化～代入～(2)

 「配列の要素.フィールド名」で、個々のオブジェクトの情報を表現
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住所: info[0].address

出席番号: info[0].studentNumber

英語の得点: info[0].english

数学の得点: info[0].math

国語の得点: info[0].language

住所: info[1].address

出席番号: info[1].studentNumber

英語の得点: info[1].english

数学の得点: info[1].math

国語の得点: info[1].language

出席番号1番の生徒(info[0])

出席番号2番の生徒(info[1])

処理クラスの中で
変数として利用
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 フィールドに値を入れることにより、各オブジェクトの固有のデータが設定

オブジェクトの配列化～代入～(2)

public  class StudentManage {

public static void main(String[] args) {

.......

info[0].address="2-6-1, Suginamiku...";

info[0].studentNumber=1;

info[0].english=80;

.......

info[1].address="1-1-1, Kichijoji...";
info[1].studentNumber=2;

info[1].english=93;

}

}

address:  2-6-1, Suginamiku...

studentNumber: 1

english: 80

math: 

language: 

address: 1-1-1, Kichijoji...

studentNumber: 2

english: 93

math: 

language: 

出席番号1番の生徒

出席番号2番の生徒
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 オブジェクトを配列にしたときも、添え字の考え方はこれまでと全く同じ

添え字は0から数え始める

 0～[宣言した数-1]の番号の添え字を利用できる

 ..., -3, -2, -1や、[宣言した数], [宣言した数+1], [宣言した数+2], ...は使えない

高校の生徒などの場合、添え字と出席番号を対応させると扱いやすい
 Ex. 出席番号1番の生徒は添え字0, 出席番号2番の生徒は添え字1, ...

オブジェクトの配列化～利用～
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 クラス作成～フィールドへの値の代入は、個人情報の入力シートの
作成をして、シートに入力するまでの流れのイメージ

 クラス作成: 個人情報の入力シートの作成

 オブジェクトの変数(配列)宣言: コピー機に用紙をセット

 オブジェクトの作成(配列): コピー機で個人情報の入力シートをコピー

 フィールドに値を代入: 1人1人がシートに記入

クラスと配列のオブジェクトのイメージ

クラス作成
(入力シート作成) 用紙をセット

入力シートを
コピー 入力シートに記入
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 オブジェクトのフィールドに値を設定後、ArrayListに登録

 ArrayListに登録後、フィールドに値を設定するのはややこしいので注意!

オブジェクトのArrayList化～代入～

public  class StudentManage {

public static void main(String[] args) {

.......

info.address="2-6-1 Zempukuji, Suginami-ku, ...";

info.studentNumber=1;

info.english=80;

studentList.add(info);

.......

}

}

オブジェクトのフィールドに1つ1つ値を代入し、
ArrayListに登録
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 「get」や「size」などのメソッドはこれまでと同様に利用可能

 ArrayListならではのfor文の書き方も利用可能

オブジェクトのArrayList化～利用～

int i;

Student st;

for (i = 0; i < studentList.size(); i = i + 1) {

st = studentList.get(i);

処理内容(「st.studentNumber」の形の変数も利用可能)

}

for (Student st: studentList) {

処理内容(「st.studentNumber」の形の変数も利用可能)
}

同じ処理
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 オブジェクト指向プログラミングでよく見る例外

 オブジェクトを作成せずに、オブジェクトのフィールドを使おうとしているときの
例外

 コピー前の用紙(白紙)の入力欄を使おうとしているイメージ

NullPointerException

public  class StudentManage {

public static void main(String[] args) {

Student[]  info = new  Student[50];

info[0].address="2-6-1, Suginamiku...";

info[0].studentNumber=1;

info[0].english=80;

.......

}

}

info[0] = new Student();

が必要

コンパイルと実行
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 コンパイル

 「javac」の後に、ファイル名をスペースでつなげて複数のファイルをコンパイル

 または、「*」でそのフォルダに保存されているJavaファイルすべてをコンパイル

プログラムに関係ないJavaファイルもコンパイルされる。関係ないJavaファイルに
コンパイルエラーがあれば、コンパイルが完了しないので注意

 実行

 「java」の後に、「public static void main」が書かれているファイル名
(拡張子なし)を書く

コンパイルと実行のしかた

% javac StudentManage.java  Student.java

% java  StudentManage

% javac *.java
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 高校の生徒5人分の名前・出席番号・5教科の得点の平均点を管理
するクラスを作り、下記のように5人の情報を順番に表示するプログラム

出席番号 名前平均点

 1 東京子 80.3

 2 善福寺花子 83.4

 ...............

 友達の名前とメールアドレスを管理するクラスを作り、標準入力から名前
が入力されたらメールアドレスを表示するプログラム

やってみよう!(1)
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 下記の2つのクラスを持つプログラム
 1つ目のクラス: 生徒クラス

名前と出席番号、5教科の試験の得点を入れるフィールドを持つ

 2つ目のクラス: 処理クラス
生徒クラスのオブジェクトに5教科の試験の得点を設定する

生徒の5教科の試験の平均点を計算する

 お菓子の名前と値段を入れるフィールドを持つお菓子クラスを作成し、
標準入力で入力されたお菓子の名前と値段をフィールドの値として
代入するプログラム
条件

お菓子の情報は5つ分入力するようにし、配列でオブジェクトを扱うプログラムと、
ArrayListでオブジェクトを扱うプログラムの両方を作ること(つまり、プログラムを2つ作ること)

代入した結果を標準出力に出力すること

やってみよう!(2)


