
1

情報処理技法
(Javaプログラミング)2

第6回
オブジェクト指向って?

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 1 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 2

 プログラミングの種類

 オブジェクト指向とは?

第6回の内容

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 3

 「アルゴリズム」とは何か、下記のキーワードを使って説明しなさい。

 キーワード: プログラム, 手順, 図

前回の出席課題の回答

解答例

アルゴリズムとは、ある問題を解決するときの手順のことである。箇条書きの文章で
書いたり、図を使って描くこともある。プログラムは、アルゴリズムをプログラミング言語で
表現したものである。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 6

 関数型言語

 手続き型

 オブジェクト指向言語

プログラミングの種類

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 7

 数学的な関数のみをもとにして記述するプログラム言語

一度変数に値が与えられれば、その変数の値は変化しない

計算結果を引数とする、関数呼び出しのみで計算を行う

 プログラミング言語: Lisp, Schemeなど

関数型言語

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 8

 記述された命令を上から順に実行していくプログラム言語

処理の結果に応じて変数の値が変化

 プログラミング言語: C言語, BASIC, Pascalなど

手続き型言語

2

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 9

 「もの」と「もの」との関係に重点を置いて記述するプログラミング言語

 ある「もの」に対して、それが持つ情報と、その「もの」が行う作業を記述する

 ある「もの」と別の「もの」とのコミュニケーションを記述することで、プログラムを
動作させる

 プログラミング言語: SmallTalk, C++, C#など

オブジェクト指向言語

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 10

 オブジェクト指向言語

 これまでの言語にはない、完全なオブジェクト指向を実現した言語

 「Write Once, Run Anywhere」(一度記述すればどこでも動作する)が
キャッチコピー

一度記述すれば、OS等の環境が異なるコンピュータでもプログラムは動作する

他のプログラミング言語では、OS等が違うとコンパイル・実行ができないこともある

Javaは?

オブジェクト指向の基礎

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 11 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 12

 オブジェクト指向: 「もの」を中心してソフトウェアを構築する考え方

 「もの」: オブジェクト(インスタンスとも)

 1つ1つの具体的な実物

名前を示されたとき、「これ」とそのものを特定できるもの

 「もの」の分類: クラス

実物を分類したカテゴリ(実物の総称のような概念)

名前を示されたとき、その概念にあてはまるものがいくつか存在するもの

オブジェクト指向

※「オブジェクト」と「インスタンス」は厳密にはちがうもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 13

 Javaは、「クラス」というものを基本にして動作

 クラス: Javaプログラムを動作させるための基本単位

 XXの処理をするためのクラス

 XXのデータを定義するためのクラス

 etc.

 それぞれの役割を持ったクラスをたくさん作り、お互いに連携させることで
Javaのプログラムは動作

クラスって(1)?

これまで書いてきた
Javaプログラム

今回のクラス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 14

 「public class クラス名 {」でクラスの名前を指定

 Javaでは、原則として「クラス名」は、拡張子なし(「.java」なし)の
ファイル名にする
クラス名とファイル名は全く違うものにすることもできるが、原則として同じものにする

コンパイルすると、「クラス名.class」という名前のファイルができる

クラスって(2)?

3

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 15

 異なる種類の情報をひとまとめにして扱うためのもの

データを定義するためのクラス

高校の生徒1人分の情報
String name, address, tel;

int studentNumber, english, math, language, science, society;

これだけの情報を持った「クラス」を作る

一種のデータ型(ただし、「int」や「double」と違い、
内部で色々な情報を持っている)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 16

 プログラムで扱うデータについて、何がひとまとまりかを定義したもの

高校の生徒はどんな情報を持つ?

住所, 氏名, 電話番号, 所属クラス, 試験の成績, etc.

図書館の本はどんな情報を持つ?

タイトル, 著者, 出版社, 出版年, ID, etc.

「クラス」は情報の集合体

具体的なデータを持つのは「オブジェクト」

ただし! 「クラス」は、具体的なデータは持たない
 東京子さんの試験の成績は?

 図書館の蔵書ID 0001の本のタイトルは?

「これでひとまとまり」と定義

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 17

 「クラス」とは、別の考え方をすれば、それぞれの人や物が
「どういう種類の情報を持っているか」を表すもの

「オブジェクト」って?

「Student」クラス(高校の生徒がどういう情報を持っているか)

出席番号1番の生徒(クラスA)

出席番号2番の生徒(クラスA)
......

出席番号1番の生徒(クラスB)

出席番号2番の生徒(クラスB)

「住所」や「氏名」などの情報の持ち主

=オブジェクト

オブジェクト: 実際に具体的な情報を
持っている人や物

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 18

 クラス

実物を分類したカテゴリ(実物の総称のような概念)

名前を示されたとき、その概念にあてはまるものがいくつか存在するもの

 オブジェクト

 1つ1つの具体的な実物

名前を示されたとき、「これ」とそのものを特定できるもの

クラスとオブジェクト(1)

人や物を、持っている情報によって分類したもの
Ex. 東京女子大学の学生

「クラス」の分類に当てはまる、具体的な人や物
Ex. 東京女子大学の学生の東京子さん

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 19

クラスとオブジェクト(2)

「学生」というカテゴリ(クラス)に分類

「本」というカテゴリ(クラス)に分類

図書館蔵書ID 0002:

マーチン・ファウラー著, 羽生田栄一監訳:

UMLモデリングのエッセンス, 翔泳社

図書館蔵書ID 0001:

児玉公信著: UMLモデリングの本質,

日経BP社 実物の本 =オブジェクト

学生番号 k14x1001: 東京子

学生番号 k13x1001: 善福寺花子
実物の学生 =オブジェクト

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 20

 クラス: 同じ属性と操作を持つオブジェクトの集合

属性(フィールド):オブジェクトが持つ情報(データ)

操作(振る舞い, メソッド): オブジェクトが担当する処理

クラスとオブジェクト(3)

学生

学生番号
住所
成績

授業に出席する
レポートを書く

本

タイトル
著者

データを見せる
貸し出し処理をする
返却処理をする

犬

名前
飼い主

遊ぶ
寝る
えさを食べる

クラス名 属性(フィールド) 操作(メソッド)

クラスの例

4

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 21

 1つのクラスにオブジェクトを所属させることができる

 クラス: 実物を分類したカテゴリのようなもののため

 オブジェクト同士は、それぞれのクラスに定義された操作(処理)を
呼び出す

操作(処理)の呼び出しを「メッセージ」と呼ぶ

 メッセージを組み合わせてオブジェクト同士がコミュニケーションすることで
プログラム全体が成り立つ

クラスとオブジェクト(4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 22

属性・操作・メッセージ(例)

利用者

タイトル
著者
出版社

持っているデータ

自分のデータを見せる
貸し出し処理をする
返却処理をする

担当する処理

本

「あなた(本)を貸して」と
お願いする(処理を呼び出す)

メッセージ

クラス

属性
(フィールド)

操作(振る舞い,

メソッド)

プログラムでのクラスとオブジェクト

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 23 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 24

1.クラスを定義する

 それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2.オブジェクトを作る

 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する

 2. で作ったオブジェクトに、具体的なデータを設定

プログラムでしなければならないこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 25

 データを定義するためのクラス(Javaファイル)を1つ作成

処理のクラスとは別に作成

 処理をするためのクラス(Javaファイル)を1つ作成

 データ定義のクラスとは別に作成

 処理のクラスの中で、データ定義のクラスのオブジェクトを作成

 処理のクラスの中に、オブジェクトを使って、様々な処理を記述

原則

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 26

 これまでと同じ

 1ファイル1クラス

 オブジェクトが持つデータ(フィールド)を変数として宣言

どのメソッドにも含まれない場所で宣言

 オブジェクトが担当する処理(メソッド)を定義

1. クラスの定義のしかた

import java.io.*;

import java.lang.*;

public class Student {

String address, name, tel;

int studentNumber, english, math, language;

}

クラス名

フィールドの宣言

メソッドの定義

5

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 27

 フィールドの変数に「static」というキーワードをつけて宣言することがある

 Ex1. static String schoolName;

 Ex2. static int classNumber;

 staticなしのフィールド(インスタンス変数)

 オブジェクトごとに値が異なるフィールドを表現するために利用

 Ex. 1人1人の生徒の住所や電話番号、試験の成績など

 staticつきのフィールド(クラス変数)

 どのオブジェクトも値が同じであるフィールドを表現するために利用

 Ex. 学校の名前など

「static」キーワード

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 28

1.クラスを定義する

 それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2.オブジェクトを作る

 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する

 2. で作ったオブジェクトに、具体的なデータを設定

プログラムでしなければならないこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 29

 「new クラス名()」でオブジェクトを作成し変数に代入

 この作成・代入処理は、1. のクラスとは別のクラスのメソッド内で行う

2. オブジェクトの作り方

public class StudentManage {

public static void main(String[] args) {

Student info;

.......

info = new Student();

}

}

「Student」クラスの
変数(オブジェクト名)を宣言

オブジェクトの作成と
変数への代入

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 30

 具体的な情報が何も設定されていない、情報の入れ物を作る、という
イメージ

「オブジェクトを作る」とは?

new Student()

address:

studentNumber:

english:

math:

language:

address:

studentNumber:

english:

math:

language:

出席番号1番の生徒

出席番号2番の生徒

オブジェクト作成

オブジェクト作成

具体的な値は何もなし

「オブジェクト」が複数ある場合

 高校の生徒: 何人も存在

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 31

オブジェクトを配列またはArrayListにする

public class StudentManage {

public static void main(String[] args) {

Student info;

.......

info = new Student();

}

}

StudentManage.java

これだと、1人分の情報だけ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 32

 オブジェクト: プログラムでの表記は変数と同じ
= これまでのintやStringと同様に配列の宣言が可能

複数のオブジェクトの扱い～配列～(1)

public class StudentManage {

public static void main(String[] args) {

Student[] info = new Student[50];

.......

info[0] = new Student();

info[1] = new Student();

.......

}

} 「Student」クラスの
オブジェクトを50個分宣言

6

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 33

 これまでと同様、「オブジェクト名[添え字] = new クラス名();」で作成

配列で扱う個々のオブジェクトの作成を忘れないこと

複数のオブジェクトの扱い～配列～(2)

public class StudentManage {

public static void main(String[] args) {

Student[] info = new Student[50];

.......

info[0] = new Student();

info[1] = new Student();

.......

}

}
オブジェクトを1つ1つ作成(for文や
while文でまとめて作成してもOK)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 34

 []: 配列を表す

 Student info[] = new Student[30];

←変数「info」を、Studentクラスの30個の要素を持つ配列として宣言

 Student info = new Student();

←変数「info」に、Studentクラスの変数として宣言し、オブジェクトを代入

[]と()の違いに注意!

Student[] info = new Student[30]; // infoを30個の要素を持つ配列として宣言
info[0] = new Student(); // info[0]にオブジェクトを代入
info[1] = new Student(); // info[1]にオブジェクトを代入
...

「new Student...」と書いていても、意味が全く違うので注意!

 オブジェクトを配列にするときは、配列としての宣言と、
各要素へのオブジェクトの代入が必要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 35

 オブジェクト: ArrayListで扱うことも可能

複数のオブジェクトの扱い～ArrayList～(1)

public class StudentManage {

public static void main(String[] args) {

ArrayList<Student> studentList = new ArrayList<Student>();

.......

Student info = new Student();

studentList.add(info);

.......

}

}
「Student」クラスのオブジェクトを
登録するためのArrayListの宣言

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 36

 1つ1つオブジェクトを作成し、ArrayListに登録

複数のオブジェクトの扱い～ArrayList～(2)

public class StudentManage {

public static void main(String[] args) {

ArrayList<Student> studentList = new ArrayList<Student>();

.......

Student info = new Student();

studentList.add(info);

.......

}

}
オブジェクトを1つ1つ作成(for文や
while文でまとめて作成してもOK)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 37

1.クラスを定義する

 それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2.オブジェクトを作る

 クラスに所属する個々のオブジェクトの情報の入れ物を作成

3.オブジェクトにデータを設定する

 2. で作ったオブジェクトに、具体的なデータを設定

プログラムでしなければならないこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 38

 オブジェクトの作成後、フィールドに値を代入可能

 「オブジェクト名.フィールド名」で普通の変数と同様に扱う

 「new」として、オブジェクトを作成したクラスのメソッド内で、「オブジェクト名.フィールド名」と
いう変数を利用できる

オブジェクトの利用(値の代入と参照)(1)

public class StudentManage {

public static void main(String[] args) {

Student info;

.......

info = new Student();

info.address="2-6-1, Suginamiku...";

info.studentNumber=1;

info.english=80;

}

}

フィールドに
値を代入

7

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 39

 「オブジェクト名.フィールド名」で、「フィールド名」として使えるのは
1. で定義したクラスのフィールドの変数

 「オブジェクト名.フィールド名」で、「オブジェクト」「の(.)」「フィールド名」という意味

オブジェクトの利用(値の代入と参照)(2)

public class StudentManage {

public static void main(String[] args) {

Student info;

.......

info = new Student();

info.address="2-6-1, Suginamiku...";

info.studentNumber=1;

info.english=80;
}

}

public class Student {

String address, name, tel;

int studentNumber, english, math, language;

}

StudentManage.java

Student.java

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 40

 「オブジェクト名[添え字].フィールド名」で、通常の変数と同様に扱う

オブジェクトの配列化～代入～(1)

public class StudentManage {

public static void main(String[] args) {

Student[] info = new Student[50];

.......

info[0] = new Student();

.......

info[0].address="2-6-1, Suginamiku...";

info[0].studentNumber=1;

info[0].english=80;

.......

}

}

オブジェクトのフィールドに1つ1つ値を代入

オブジェクトの配列化～代入～(2)

 「配列の要素.フィールド名」で、個々のオブジェクトの情報を表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 41

住所: info[0].address

出席番号: info[0].studentNumber

英語の得点: info[0].english

数学の得点: info[0].math

国語の得点: info[0].language

住所: info[1].address

出席番号: info[1].studentNumber

英語の得点: info[1].english

数学の得点: info[1].math

国語の得点: info[1].language

出席番号1番の生徒(info[0])

出席番号2番の生徒(info[1])

処理クラスの中で
変数として利用

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 42

 フィールドに値を入れることにより、各オブジェクトの固有のデータが設定

オブジェクトの配列化～代入～(2)

public class StudentManage {

public static void main(String[] args) {

.......

info[0].address="2-6-1, Suginamiku...";

info[0].studentNumber=1;

info[0].english=80;

.......

info[1].address="1-1-1, Kichijoji...";
info[1].studentNumber=2;

info[1].english=93;

}

}

address: 2-6-1, Suginamiku...

studentNumber: 1

english: 80

math:

language:

address: 1-1-1, Kichijoji...

studentNumber: 2

english: 93

math:

language:

出席番号1番の生徒

出席番号2番の生徒

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 43

 オブジェクトを配列にしたときも、添え字の考え方はこれまでと全く同じ

添え字は0から数え始める

 0～[宣言した数-1]の番号の添え字を利用できる

 ..., -3, -2, -1や、[宣言した数], [宣言した数+1], [宣言した数+2], ...は使えない

高校の生徒などの場合、添え字と出席番号を対応させると扱いやすい
 Ex. 出席番号1番の生徒は添え字0, 出席番号2番の生徒は添え字1, ...

オブジェクトの配列化～利用～

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 44

 クラス作成～フィールドへの値の代入は、個人情報の入力シートの
作成をして、シートに入力するまでの流れのイメージ

 クラス作成: 個人情報の入力シートの作成

 オブジェクトの変数(配列)宣言: コピー機に用紙をセット

 オブジェクトの作成(配列): コピー機で個人情報の入力シートをコピー

 フィールドに値を代入: 1人1人がシートに記入

クラスと配列のオブジェクトのイメージ

クラス作成
(入力シート作成) 用紙をセット

入力シートを
コピー 入力シートに記入

8

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 45

 オブジェクトのフィールドに値を設定後、ArrayListに登録

 ArrayListに登録後、フィールドに値を設定するのはややこしいので注意!

オブジェクトのArrayList化～代入～

public class StudentManage {

public static void main(String[] args) {

.......

info.address="2-6-1 Zempukuji, Suginami-ku, ...";

info.studentNumber=1;

info.english=80;

studentList.add(info);

.......

}

}

オブジェクトのフィールドに1つ1つ値を代入し、
ArrayListに登録

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 46

 「get」や「size」などのメソッドはこれまでと同様に利用可能

 ArrayListならではのfor文の書き方も利用可能

オブジェクトのArrayList化～利用～

int i;

Student st;

for (i = 0; i < studentList.size(); i = i + 1) {

st = studentList.get(i);

処理内容(「st.studentNumber」の形の変数も利用可能)

}

for (Student st: studentList) {

処理内容(「st.studentNumber」の形の変数も利用可能)
}

同じ処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 47

 オブジェクト指向プログラミングでよく見る例外

 オブジェクトを作成せずに、オブジェクトのフィールドを使おうとしているときの
例外

 コピー前の用紙(白紙)の入力欄を使おうとしているイメージ

NullPointerException

public class StudentManage {

public static void main(String[] args) {

Student[] info = new Student[50];

info[0].address="2-6-1, Suginamiku...";

info[0].studentNumber=1;

info[0].english=80;

.......

}

}

info[0] = new Student();

が必要

コンパイルと実行

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 66

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 67

 コンパイル

 「javac」の後に、ファイル名をスペースでつなげて複数のファイルをコンパイル

 または、「*」でそのフォルダに保存されているJavaファイルすべてをコンパイル

プログラムに関係ないJavaファイルもコンパイルされる。関係ないJavaファイルに
コンパイルエラーがあれば、コンパイルが完了しないので注意

 実行

 「java」の後に、「public static void main」が書かれているファイル名
(拡張子なし)を書く

コンパイルと実行のしかた

% javac StudentManage.java Student.java

% java StudentManage

% javac *.java

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 69

 高校の生徒5人分の名前・出席番号・5教科の得点の平均点を管理
するクラスを作り、下記のように5人の情報を順番に表示するプログラム

出席番号 名前平均点

 1 東京子 80.3

 2 善福寺花子 83.4



 友達の名前とメールアドレスを管理するクラスを作り、標準入力から名前
が入力されたらメールアドレスを表示するプログラム

やってみよう!(1)

9

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 70

 下記の2つのクラスを持つプログラム
 1つ目のクラス: 生徒クラス

名前と出席番号、5教科の試験の得点を入れるフィールドを持つ

 2つ目のクラス: 処理クラス
生徒クラスのオブジェクトに5教科の試験の得点を設定する

生徒の5教科の試験の平均点を計算する

 お菓子の名前と値段を入れるフィールドを持つお菓子クラスを作成し、
標準入力で入力されたお菓子の名前と値段をフィールドの値として
代入するプログラム
条件

お菓子の情報は5つ分入力するようにし、配列でオブジェクトを扱うプログラムと、
ArrayListでオブジェクトを扱うプログラムの両方を作ること(つまり、プログラムを2つ作ること)

代入した結果を標準出力に出力すること

やってみよう!(2)

