
情報処理技法
(Javaプログラミング)2

第4回
アルゴリズム(2)

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 1

第4回の内容
 アルゴリズム(続き)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 2

前回の出席課題の解答
 このプログラムは、自分の名前と相手の名前を入力し、挨拶を出力するプログラムです。(処理)の
部分にどのような処理が入るか、下記の選択肢から最も適切なものを選びなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 3

public static void sayHello(String you, String me) {
(処理)

}

public static void main(String[] args) {
String you, me;
try {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

// 自分の名前の入力
System.out.print("あなたの名前を入力してください > ");
me = br.readLine();

// 挨拶の相手のの名前の入力
System.out.print("挨拶をする人の名前を入力してください > ");
you = br.readLine();

// 挨拶処理
sayHello(you, me);

}
catch(IOException e) {
System.out.println("標準入力ができませんでした");

}
}

(a)
String message;
message = "Hello, " + you + "! My name is " + me + "!";
return message;

(b)
System.out.println("Hello, " + you + "!");
System.out.println("My name is " + me + "!");

(c)
String message;
message = "Hello, " + you + "! My name is " + me + "!";

(d)
String message;
message = "Hello, " + you + "! My name is " + me + "!";
return message;
System.out.println(message);

選択肢プログラム

解答: b

前回の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 4

アルゴリズムとは
 アルゴリズム: ある問題を解決するときに必要な処理手順

 プログラムを書くときには、必ずアルゴリズムを考える必要

 プログラム: アルゴリズムをプログラミング言語を使って記述したもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 5

Ex. 焼きそば作りのアルゴリズム:
1. キャベツや肉などの具をフライパンで炒めなさい。
2. フライパンからいったん具を取り出しなさい。
3. めんをフライパンで炒めなさい。
4. 具をめんの入っているフライパンに戻しなさい。
5. 焼きそばソースを加えてさらに炒めなさい。

アルゴリズムの表現方法
文章で書く

箇条書きで書くことも多い

図で書く

 プログラムで書く

 プログラムが最終段階

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 6

プログラムで行う処理手順がわからなければ、まず文章で書き出して、
それを詳細にしていく

焼きそば作成(図)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 7

開始

フライパンを火にかける

フライパンに油を引く

具を炒める

さらに炒める

具をいったん取り出す

めんを炒める

さらに炒める

フライパンに具を戻す

ソースを加えて混ぜる

終了

火が通ったか

火が通ったか

Yes

No

No

Yes

焼きそば作成(プログラム1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 8

public static void main(String[] args) {
// 開始
フライパンを火にかける;
フライパンに油を引く;
具を炒める;
while (火が通っていない) {
// Yes(「火が通ったか?」に対して「No」)
さらに炒める

}
// 「火が通ったか?」に対して「Yes」
具をいったん取り出す;
めんを炒める;

焼きそばのアルゴリズムをプログラム的に表現

焼きそば作成(プログラム2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 9

while (火が通っていない) {
// Yes(「火が通ったか?」に対して「No」)
さらに炒める;

}
// 「火が通ったか?」に対して「Yes」
フライパンに具を戻す;
ソースを加えて混ぜる;
// 終了

}

焼きそばのアルゴリズムをプログラム的に表現(続き)

有名なアルゴリズム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 10

並べ替え(ソート)
 ソート: 複数の数を小さい or 大きい順に並べること

バブルソート

選択ソート

併合ソート

 クイックソート

 etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 11

バブルソート(1)
前から2つずつ、数の大きさを比較して、小さい数を後ろに送っていく

最後まで調べると、最も小さな数が一番後ろにある

 この作業を、並べ替える数の個数だけ繰り返すと、数が大きい順に並ぶ

 x1<x2ならば、x1とx2を入れ替える

 x2<x3ならば、x2とx3を入れ替える

 ...

 xn-1<xnならば、xnとxn-1を入れ替える

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 12

 n個の数でこの処理が終わった後にn番目に最も小さな数
 n-1回この処理を繰り返すことで、大きい順に数を並べ替え

バブルソート(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 13

4 2 58

比べる

4より8の方が大きいので交換

8 2 54

比べる

2より4の方が大きいのでそのまま

8 2 54

比べる

2より5の方が大きいので交換

8 5 24

 最も小さな数が一番後ろに来る
 次は、一番後ろの1つ前まで (8, 4, 5)で同じようにする

選択ソート(1)
変数t: 並べ替えをする数の中で最も小さい数を入れておく変数

変数i: 並べ替えをする数の中で、tが最初から何番目の位置にあるかを
表す変数

変数j: 何回繰り返したかを数えるための変数

並べ替えをする数はn個

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 14

選択ソート(2)
1. tに並べ替えをする数の一番最初の数を代入する

2. iに1を代入する

 1: 並べ替えをする数の一番最初の数の位置

3. jに2を代入し、1ずつ増やしながらnになるまで以下を繰り返す

 tがj番目の数より大きいならば、j番目の数をtに代入し、iにjの値を代入する

4. 並べ替えをする数の一番最後の数とtを入れ替える

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 15

 この処理を1回するごとにjの値を1増やす
 jの値は、現在調べている数の位置になる

選択ソート(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 16

4 2 58

4 5 28

 tに4を代入する
 iに1を代入する

ステップ1:

 jに2を代入する
 tの値(4)と8を比べる
 tの値の方が小さいのでそのまま

ステップ2:

 jの値を1増やす(3になる)
 tの値(4)と2を比べる
 tの値の方が大きいのでtに2を代入し、

iにjの値(3)を代入する

ステップ3:

 jの値を1増やす
 tの値(2)と5を比べる
 tの値の方が小さいのでそのまま

ステップ4:

 tの値(2)を最後に置く
 これまで最後だった数(5)をi番目に入れる

ステップ5:

 最も小さな数が一番後ろに来る
 次は、一番後ろの1つ前まで(8, 4, 5)で
同じようにする

アルゴリズムの良し悪し

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 17

良いアルゴリズム
 そのアルゴリズムによるプログラムを実行するときの計算時間や
記憶領域の使用量の少なさ

 アルゴリズムのわかりやすさ・作りやすさ・修正の容易さ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 18

アルゴリズムの計算時間
 CPUそのものの速さや、コンパイラに大きく依存

 ファイルの入出力時の記憶装置とのアクセスの
速度に依存

 メインメモリが少ない場合、メインメモリとHDDの間でデータが頻繁に
行き来(スラッシング)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 19

これらを除いても、同じ結果を出す複数のアルゴリズムで、
計算時間に違いが出る

アルゴリズムの計算量

アルゴリズムの計算量
 CPUの速さなど、アルゴリズムには関係ない要因を除いた、
アルゴリズムそのものの計算時間

 Ex. for文で繰り返す回数, 足し算・かけ算などの回数, etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 20

アルゴリズムのわかりやすさ
一旦完成したプログラム: 機能の追加などのためにプログラムの修正が
必要なことも多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 21

アルゴリズムの修正

プログラムを読んで理解する = 書かれてあるアルゴリズムの理解が必要
 アルゴリズムが難解 = 修正が難しい
 アルゴリズムが簡単 = 修正が容易

人がプログラムを
読んで理解する

アルゴリズムを使う状況
多くの場合、計算時間の速いアルゴリズムとわかりやすいアルゴリズムは
対立関係

計算時間が速ければ、わかりにくいアルゴリズム

わかりやすければ、計算時間が遅い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 22

速さをとるか、わかりやすさをとるかは、状況に応じて判断
 めったに使わないプログラムや頻繁に修正するプログラム: わかりやすいアルゴリズム
 よく使うプログラムや計算時間に制約があるプログラム: 速いアルゴリズム

並べ替えアルゴリズムの比較(1)
結果が出るまでの基本処理の回数(アルゴリズムの計算量)

バブルソート: N(N-1)/2

 クイックソート: Nlog2(N)
※log2(N): Nを2kとしたときの「k」

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 23

N N(N-1)/2(バブル) Nlog2(N)(クイック)

8 28 24

32 496 160

64 2016 384

128 8128 896

Nが大きければ大きいほど、クイックソートの方が速い

N: 並べ替える数の個数

並べ替えアルゴリズムの比較(2)
計算量: 入力(N: 並べ替えの場合は数の個数)に対して行われる
基本処理の回数

 Nが十分に大きなとき: 計算式の中の最も大きな項だけに着目して、
大まかに計算
= 各項の比例定数や次数の低い項は無視

バブル: N(N-1)/2 = N2/2 – N/2
→N2のみに注目

クイック: Nlog2N
→Nlog2Nのみに注目

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 24

アルゴリズムの計算量は、正確な計算量ではなく、Nが大きくなればどの程度の割合で
計算量が増えるかを大まかに知ることが重要なため

並べ替えアルゴリズムの比較(3)
計算時間の速いアルゴリズム: NやlogNなどのみで計算量が
計算できるアルゴリズム

計算時間の遅いアルゴリズム: N2, N3, ..., NkやN!(1からNまでを
かけあわせた数), 2Nなど、多くのかけ算を計算に必要とするアルゴリズム

 N2, N3などの計算を必要とするアルゴリズム: 多項式時間アルゴリズム

 N!や2Nなどの計算を必要とするアルゴリズム: 指数時間アルゴリズム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 25

準備
授業のページから2つのファイルをダウンロード

 BubbleSort.java

バブルソートをするプログラム

 QuickSort.java

クイックソートをするプログラム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 26

BubbleSort.java(前半1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 27

int num = 10000;
int i;
int[] random = new int[num];
for (i = 0; i < num; i++) {
random[i] = (int) (num * Math.random());

}
try {
File file = new File("BubbleSort.txt");
FileWriter fw = new FileWriter(file);
PrintWriter pw = new PrintWriter(fw);

pw.println("並べ替え前");
for (i = 0; i < num; i++) {
pw.write(Integer.toString(random[i]) + ", ");

}
Calendar cal1 = Calendar.getInstance();
long beforeTime = cal1.getTimeInMillis();

並べ替えをする
数の個数

BubbleSort.java(前半2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 28

int num = 10000;
int i;
int[] random = new int[num];
for (i = 0; i < num; i++) {
random[i] = (int) (num * Math.random());

}
try {
File file = new File("BubbleSort.txt");
FileWriter fw = new FileWriter(file);
PrintWriter pw = new PrintWriter(fw);

pw.println("並べ替え前");
for (i = 0; i < num; i++) {
pw.write(Integer.toString(random[i]) + ", ");

}
Calendar cal1 = Calendar.getInstance();
long beforeTime = cal1.getTimeInMillis();

並べ替えをする数を
乱数で作成

BubbleSort.java(前半3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 29

int num = 10000;
int i;
int[] random = new int[num];
for (i = 0; i < num; i++) {
random[i] = (int) (num * Math.random());

}
try {
File file = new File("BubbleSort.txt");
FileWriter fw = new FileWriter(file);
PrintWriter pw = new PrintWriter(fw);

pw.println("並べ替え前");
for (i = 0; i < num; i++) {
pw.write(Integer.toString(random[i]) + ", ");

}
Calendar cal1 = Calendar.getInstance();
long beforeTime = cal1.getTimeInMillis();

数を並べ替える直前の時間を計測

BubbleSort.java(後半1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 30

for (i = 0; i < num; i++) {
for (j = 0; j < num - i - 1; j++) {
if (random[j] > random[j + 1]) {
temp = random[j + 1];
random[j + 1] = random[j];
random[j] = temp;

}
}

}
Calendar cal2 = Calendar.getInstance();
long afterTime = cal2.getTimeInMillis();
System.out.println("かかった時間(バブルソート): " + (afterTime - beforeTime) + "ミリ秒");

pw.println("¥n¥n並べ替え後");
for (i = 0; i < num; i++) {
pw.write(Integer.toString(random[i]) + ", ");

}
fw.close();
pw.close();

}
catch(IOException e) { }

バブルソートをする処理部分

BubbleSort.java(後半2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 31

for (i = 0; i < num; i++) {
for (j = 0; j < num - i - 1; j++) {
if (random[j] > random[j + 1]) {
temp = random[j + 1];
random[j + 1] = random[j];
random[j] = temp;

}
}

}
Calendar cal2 = Calendar.getInstance();
long afterTime = cal2.getTimeInMillis();
System.out.println("かかった時間(バブルソート): " + (afterTime - beforeTime) + "ミリ秒");

pw.println("¥n¥n並べ替え後");
for (i = 0; i < num; i++) {
pw.write(Integer.toString(random[i]) + ", ");

}
fw.close();
pw.close();

}
catch(IOException e) { }

数を並べ替えた直後の時間を計測

QuickSort.java(前編)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 32

public static void sort(int[] rand, int first, int last) {
int i, j, temp, x = rand[(first + last) / 2];

i = first;
j = last;
while (true) {
while (rand[i] < x) {
i = i + 1;

}
while (x < rand[j]) {
j = j - 1;

}
if (i >= j) {
break;

}
temp = rand[j];
rand[j] = rand[i];
rand[i] = temp;
i = i + 1;
j = j - 1;

}

クイックソートの
処理部分

(メソッドとして定義)

QuickSort.java(中編1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 33

if (first < i - 1) { sort(rand, first, j - 1); }
if (j + 1 < last) { sort(rand, j + 1, last); }

}
public static void main(String[] args) {
int i, j, temp, num = 10000;
int[] random = new int[num];
for (i = 0; i < num; i++) {
random[i] = (int) (num * Math.random());

}
try {
File randFile = new File("QuickSort.txt");
FileWriter fw = new FileWriter(randFile);
PrintWriter pw = new PrintWriter(fw);

pw.println("並べ替え前");
for (i = 0; i < num; i++) {
pw.print(random[i] + " ");

}

クイックソートの
処理部分

(メソッドとして定義～続き～)

QuickSort.java(中編2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 34

if (first < i - 1) { sort(rand, first, j - 1); }
if (j + 1 < last) { sort(rand, j + 1, last); }

}
public static void main(String[] args) {
int i, j, temp, num = 10000;
int[] random = new int[num];
for (i = 0; i < num; i++) {
random[i] = (int) (num * Math.random());

}
try {
File randFile = new File("QuickSort.txt");
FileWriter fw = new FileWriter(randFile);
PrintWriter pw = new PrintWriter(fw);

pw.println("並べ替え前");
for (i = 0; i < num; i++) {
pw.print(random[i] + " ");

}

並べ替えをする
数の個数

QuickSort.java(中編3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 35

if (first < i - 1) { sort(rand, first, j - 1); }
if (j + 1 < last) { sort(rand, j + 1, last); }

}
public static void main(String[] args) {
int i, j, temp, num = 10000;
int[] random = new int[num];
for (i = 0; i < num; i++) {
random[i] = (int) (num * Math.random());

}
try {
File randFile = new File("QuickSort.txt");
FileWriter fw = new FileWriter(randFile);
PrintWriter pw = new PrintWriter(fw);

pw.println("並べ替え前");
for (i = 0; i < num; i++) {
pw.print(random[i] + " ");

}

並べ替えをする数を
乱数で作成

QuickSort.java(後編1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 36

Calendar cal1 = Calendar.getInstance();
long beforeTime = cal1.getTimeInMillis();

sort(random, 0, num - 1);

Calendar cal2 = Calendar.getInstance();
long afterTime = cal2.getTimeInMillis();
System.out.println("かかった時間(クイック): " + (afterTime - beforeTime) + "ミリ秒");

pw.println("¥n¥n並べ替え後");
for (i = 0; i < num; i++) {
pw.print(random[i] + " ");

}
pw.close();
fw.close();

}
catch(IOException e) {
}

}

数を並べ替える直前の時間を計測

QuickSort.java(後編1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 37

Calendar cal1 = Calendar.getInstance();
long beforeTime = cal1.getTimeInMillis();

sort(random, 0, num - 1);

Calendar cal2 = Calendar.getInstance();
long afterTime = cal2.getTimeInMillis();
System.out.println("かかった時間(クイック): " + (afterTime - beforeTime) + "ミリ秒");

pw.println("¥n¥n並べ替え後");
for (i = 0; i < num; i++) {
pw.print(random[i] + " ");

}
pw.close();
fw.close();

}
catch(IOException e) {
}

}

クイックソートのメソッドを呼び出す処理

QuickSort.java(後編3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 38

Calendar cal1 = Calendar.getInstance();
long beforeTime = cal1.getTimeInMillis();;

sort(random, 0, num - 1);

Calendar cal2 = Calendar.getInstance();
long afterTime = cal2.getTimeInMillis();
System.out.println("かかった時間(クイック): " + (afterTime - beforeTime) + "ミリ秒");

pw.println("¥n¥n並べ替え後");
for (i = 0; i < num; i++) {
pw.print(random[i] + " ");

}
pw.close();
fw.close();

}
catch(IOException e) {
}

}

数を並べ替える直後の時間を計測

ファイルの役割
 BubbleSort.java

 「BubbleSort.txt」に、並び替え前と後の数を保存

 QuickSort.java

 「QuickSort.txt」に、並び替え前と後の数を保存

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 39

やってみよう!(1)
配ったカードを、順番をバラバラにして...

1. バブルソートで昇順に並べ替え(練習)

2. バブルソートで昇順に並べ替え、かかった時間を計測(本番)

3. 自分のやりやすい方法で昇順に並べ替え、かかった時間を計測

4. 2. と3. の時間を比較(どちらが時間がかかっているか??)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 40

やってみよう!(2)
授業のページから2つののファイルをダウンロードし、コンパイルと実行

 BubbleSort.java

 QuickSort.java

実行した結果、かかった時間が表示されるので、どちらが速いかを比較

 2つのファイルの中に書いてある、「並べ替えをする数の個数」を
いろいろな数に変更し、実行しなおして比較

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 41

第1回課題
 プログラム作成課題

提出先: junko@cis.twcu.ac.jp

第1回の授業で連絡した、連絡用のメールアドレスとは異なるので注意すること

このメールアドレスへの質問は受け付けないので注意すること

提出期限: 10月29日(月) 18:00

詳細は授業のページに
 http://www.cis.twcu.ac.jp/~junko/Programming/Java2/

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 42

次回
課題の質問受け付け

前回の復習問題の解答はなし

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018 All rights reserved. 43

