
1

情報処理技法
(Javaプログラミング)2

第14回
操作に対して処理が行われるGUI(3), 絵を描いてみよう!

人間科学科コミュニケーション専攻

白銀 純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 1

第14回の内容
 コピー&ペースト

 プログラムでのお絵描きの基礎

準備編

お絵描き編

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 2

前回の復習問題の解答
 GUIにおいて、ボタンが押されたときに何らかの処理がされるとき、人間が
ボタンを押すときから処理が開始されるまでの仕組みについて、簡単に
説明しなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 3

「リスナ」という機能が、人間がボタンを押すのを待っている。人間がボタンを押すと、リスナが
それを感知し、マウスでのボタンクリックなど、どのようなユーザイベントが発生したかを特定する。
そして、そのユーザイベントに対応した処理を開始する。

解答例:

複数のリスナの宣言

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 4

複数のリスナを使うときは?
 1つのウィンドウ内で、複数種類のユーザイベントが起こるとき...

 JComboBoxで項目を選択すると、処理をする

 1つ目のJComboBoxで都道府県を選択すると、2つ目のJComboBoxに市区町村が
設定される, etc.

 JTextField上でマウスを右クリックすると、処理をする

ポップアップメニューを表示し、コピーや貼り付けをする, etc.

 JButtonを右クリックすると、処理をする
OKボタンを右クリックすると、ヘルプメニューを表示する, etc.

 etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 5

複数のリスナの宣言が必要

複数のリスナの宣言(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 6

import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名1, リスナ名2, ... {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.
}

public void リスナ1のメソッド名(イベント名 e) { /* リスナ1で決められたメソッド */

}

public void リスナ2のメソッド名(イベント名 e) { /* リスナ2で決められたメソッド */
}

public static void main(String[] args) {

new クラス名();
}

}

2

import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名1, リスナ名2, ... {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.
}

public void リスナ1のメソッド名(イベント名 e) { /* リスナ1で決められたメソッド */

}

public void リスナ2のメソッド名(イベント名 e) { /* リスナ2で決められたメソッド */
}

public static void main(String[] args) {

new クラス名();
}

}

複数のリスナの宣言(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 7

 利用するリスナの名前を「,」でつなげて宣言
 リスナの順序は何でもOK

import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名1, リスナ名2, ... {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.
}

public void リスナ1のメソッド名(イベント名 e) { /* リスナ1で決められたメソッド */

}

public void リスナ2のメソッド名(イベント名 e) { /* リスナ2で決められたメソッド */
}

public static void main(String[] args) {

new クラス名();
}

}

複数のリスナの宣言(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 8

 各リスナで定義されているメソッドをオーバー
ライドして処理を記述

 宣言したリスナ全てのメソッドが必要

よく使うリスナ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 9

KeyListener

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 10

KeyListener(1)
 キーボードのキーを押したときのリスナ

分類されているパッケージ: java.awt.event

 オーバーライドするメソッド名: keyTyped, keyPressed, keyReleased

 keyTyped: キーがポンと押されたときの処理を書くメソッド

 keyPressed: キーをぐっと押しっぱなしにしたときの処理を書くメソッド

 keyReleased: キーを押してはなしたときの処理を書くメソッド

 オーバーライドするメソッドの引数: KeyEvent

 この引数の「getKeyChar()」メソッドを使って、どのキーが押されたかを取得

押されたキーが何であるかによって、if文で処理を書き分け

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 11

 3つ全てオーバーライドすることが必要
 使わないメソッドの内容は空でOK

KeyListener(2)
 getKeyChar: 押されたキーがどれかをchar型で返すメソッド

 char型

 1文字だけを表現するデータ型

変数でない文字は「'」で囲む

 String型と違い、「"」でないので注意! (「"」はString型、「'」はchar型)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 12

3

KeyListener(3)
 KeyListenerの使い方例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 13

import java.awt.event.*;

import javax.swing.*;

public class KeySample extends JFrame implements ActionListener, KeyListener {

JTextField addressText;

public KeySample() {

......

addressText = new JTextField();
addressText.addKeyListener(this);

......

}

JTextFieldにKeyListenerを登録
 JTextField以外の部品(JButtonなど)でも登録可能

KeyListener(4)
 KeyListenerの使い方例(続き)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 14

public void keyTyped(KeyEvent e) {

if (e.getKeyChar() == 'a') {

/* 「a」が押されたときの処理 */

} else if (e.getKeyChar() == 'A') {

/* 「A」が押されたときの処理 */

} else if (e.getKeyChar() == '¥n') {

/* 「Enter (Return)」が押されたときの処理 */

} else if (...) {

}

}

public void keyPressed(KeyEvent e) {

}

public void keyReleased(KeyEvent e) {
}

public static void main(String[] args) {

new KeySample();
}

}

keyTypedメソッドの定義
 どのキーが押されたか、if文で条件分岐
 if文の条件は、「'」で文字を囲んで、

getKeyCharの戻り値と比較

使わないメソッドは内容が空でOK

 ただし、書いておくことは文法上必要

KeyListener(5)
 KeyListenerのよくある使い方: Enter (Return)キーを押したときに、

OKボタンを押したときと同じ処理をする

処理の内容をメソッドとして定義しておく

定義したメソッドを、Enter (Return)キーを押したときとOKボタンを押したときの
処理として記述する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 15

public void keyTyped(KeyEvent e) {

if (e.getKeyChar() == '¥n') { /* 「Enter (Return)」が押されたときの処理 */

process();

}

}

public void actionPerformed(ActionEvent e) {

if (e.getSource() == okBut) { /* OKボタンが押されたときの処理 */
process();

}

}

public void process(...) {

......

}

ItemListener

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 16

ItemListener(1)
 JComboBoxで項目が選択されたときのリスナ

分類されているパッケージ: java.awt.event

 オーバーライドするメソッド: itemStateChanged

 オーバーライドするメソッドの引数: ItemEvent

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 17

ItemListener(2)
 ItemListenerのよくある使い方: JComboBoxで大きいカテゴリを
選択すると、小さいカテゴリの選択項目を設定する

 1つ目のJComboBoxで都道府県を選択すると、2つ目のJComboBoxに
市区町村の選択項目が設定される, etc.

処理内容

 JComboBoxの「removeAllItems()」メソッドで、現在の登録をすべて消去する

 addItem(...)メソッドは追加で項目を登録するだけのため

 addItem(...)メソッドで新しい項目を登録する
Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 18

東京都を選択すると... 東京都内の市区町村の
選択項目が設定される

4

ItemListener(3)
 ItemListenerの使い方例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 19

import java.awt.event.*;

import javax.swing.*;

public class ComboSample extends JFrame implements ActionListener, ItemListener {

JComboBox prefCombo, cityCombo;

public ComboSample() {
......

prefCombo = new JComboBox();

prefCombo.addItem("都道府県を選択してください。");

prefCombo.addItem("東京都");

prefCombo.addItem("神奈川県");

......

prefCombo.addItemListener(this);

cityCombo = new JComboBox<String>();

......
}

JComboBoxにItemListenerを登録
 ItemListenerはJComboBoxにのみ登録可能

ItemListener(4)
 ItemListenerの使い方例(続き)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 20

public void itemStateChanged(ItemEvent e) {

String value = (String) prefCombo.getSelectedItem();

if (value.equals("東京都")) {

cityCombo.removeAllItems();

cityCombo.addItem("杉並区");

cityCombo.addItem("武蔵野市");
......

} else if (value.equals("神奈川県")) {
cityCombo.removeAllItems();

cityCombo.addItem("横浜市");

cityCombo.addItem("川崎市");

......

}

}

public static void main(String[] args) {

new ComboSample();
}

}

大きいカテゴリのJComboBoxで
選択された項目が何であるかで条件分岐

現在のJComboBoxの登録内容を消去

小さいカテゴリの選択項目を新たに登録

ListSelectionListener

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 21

ListSelectionListener(1)
 JListで項目が選択されたときのリスナ

 オーバーライドするメソッド: valueChanged

 オーバーライドするメソッドの引数: ListSelectionEvent

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 22

ListSelectionListener(2)
 ListSelectionListenerのよくある使い方: JListで大きいカテゴリを
選択すると、小さいカテゴリの選択項目を設定する

 1つ目のJListで都道府県を選択すると、2つ目のJListに市区町村の選択項目が
設定される, etc.

処理内容

 setListData(...)メソッドで新しい項目を登録する

 setListData(...)メソッド: JListに項目を設定するためのメソッド(引数はString型の配列)

 JComboBoxのような登録内容の削除は不要
Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 23

東京都を選択すると... 東京都内の市区町村の
選択項目が設定される

ListSelectionListener(3)
 ListSelectionListenerの使い方例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 24

import javax.swing.*;

import javax.swing.event.*;

public class ListSample extends JFrame implements ListSelectionListener {

JList prefList, cityList;

public ListSample() {
......

String[] prefs = {"東京都", "神奈川県", "千葉県", "埼玉県", "群馬県"};
prefList = new JList<String>(prefs);

prefList.addListSelectionListener(this);

......

} JListにListSelectionListenerを登録
 ListSelectionListenerはJListにのみ登録可能

5

ListSelectionListener(4)
 ListSelectionListenerの使い方例(続き)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 25

public void valueChanged(ListSelectionEvent e) {

String value = (String) prefList.getSelectedValue();

if (value.equals("東京都")) {

String[] cities = {"杉並区", "練馬区", "武蔵野市", "三鷹市"};

cityList.setListData(cities);

} else if (value.equals("神奈川県")) {

String[] cities = {"横浜市", "川崎市", "横須賀市", "鎌倉市"};
cityList.setListData(cities);

}

}

public static void main(String[] args) {

new ListSample();

}

}

大きいカテゴリのJListで選択された
項目が何であるかで条件分岐

小さいカテゴリの選択項目を新たに登録

MouseListener

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 26

MouseListener(1)
 マウスを操作したときのリスナ

分類されているパッケージ: java.awt.event

 オーバーライドするメソッド名: mouseClicked, mouseEntered,

mouseExited, mousePressed, mouseReleased

 mouseClicked: マウスのボタンがポンと押されたときの処理を書くメソッド

 mouseEntered: マウスカーソルが部品の上に来たときの処理を書くメソッド

 mouseExited: マウスカーソルが部品の上から出て行ったときの処理を書くメソッド

 mousePressed: マウスのボタンをぐっと押しっぱなしにしたときの処理を書くメソッド

 mouseReleased: マウスのボタンを押してはなしたときの処理を書くメソッド

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 27

 5つ全てオーバーライドすることが必要
 mouseClicked, mousePressed, mouseReleasedは3つのボタンのどれを押しても反応
 使わないメソッドの内容は空でOK

MouseListener(2)
 オーバーライドするメソッドの引数: MouseEvent

 この引数の「getButton()」メソッドを使って、どのボタンが押されたかを取得

 この引数の「getClickCount()」メソッドを使って、ボタンが何回押されたかを取得

ダブルクリックの判定などに利用

押されたボタンがどれであるか、何回押されたかによって、if文で処理を書き分け

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 28

マウスのボタン getButtonメソッドの戻り値

左ボタン MouseEvent.BUTTON1

ホイールボタン MouseEvent.BUTTON2

右ボタン MouseEvent.BUTTON3

マウスのボタンとgetButtonメソッドの戻り値との対応

MouseListener(3)
 MouseListenerの使い方例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 29

JTextField addressText;

public MouseSample() {
......

addressText = new JTextField();

addressText.addMouseListener(this);
......

}

JTextFieldにMouseListenerを登録
 JTextField以外の部品(JButtonなど)でも登録可能

MouseListener(4)
 MouseListenerの使い方例(続き)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 30

public void mouseClicked(MouseEvent e) {

if ((e.getButton() == MouseEvent.BUTTON1) && (e.getClickCount() == 2)) {

/* マウスの左ボタンが2回押された(ダブルクリック)ときの処理 */

}

}

public void mousePressed(MouseEvent e) {

if (e.getButton() == MouseEvent.BUTTON3) {

/* マウスの右ボタンが押されたときの処理 */
}

}

public void mouseReleased(MouseEvent e) {

}

public void mouseEntered(MouseEvent e) {

}

public void mouseExited(MouseEvent e) {

}

mouseClickedとmousePressedメソッドの定義
 どのボタンが押されたか、if文で条件分岐

使わないメソッドは内容が空でOK
 ただし、書いておくことは文法上必要

6

MouseListener(5)
 MouseListenerのよくある使い方

 マウスの右ボタンを押したときの処理を書く

 JTextFieldやJTextAreaでポップアップメニューを出してコピー&ペーストの処理, etc.

 マウスの左ボタンをダブルクリックしたときの処理を書く

 JListで項目をダブルクリックしたときに、項目の詳細情報のウィンドウを表示する処理, etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 31

ポップアップメニュー

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 32

ポップアップメニューの作成(1)
 ポップアップメニュー: その場その場で表示するメニュー

多くの場合、マウスの右クリックで表示

 Javaでの部品名: JPopupMenu

 ポップアップメニューの作成と表示

 JPopupMenuのオブジェクトを作成

 JPopupMenuのオブジェクトにJMenuItemのオブジェクトを登録

 JMenuItemの扱い方は、メニューバーを作るときと全く同じ

 JPopupMenuのオブジェクトを「show(...)」メソッドで画面上に表示

どの部品上のどの座標に表示するかを、showメソッドの引数(表示する部品, x座標,

y座標の順で)として指定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 33

ポップアップメニューの作成(2)
 マウス操作に応じて表示する場合

 MouseListenerのメソッドのMouseEvent引数のメソッドで、必要な情報を取得

 getComponent()メソッド: どの部品上でマウス操作が行われたかを取得

 getX()メソッド: マウス操作が行われた場所のx座標

 getY()メソッド: マウス操作が行われた場所のy座標

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 34

この3つの情報を、JPopupMenuのオブジェクトを表示するときに使用

ポップアップメニューの作成(3)
 マウスの右クリックでポップアップメニューを表示する例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 35

import java.awt.event.*;

import javax.swing.*;

public class MouseSample extends JFrame implements ActionListener, MouseListener {

JPopupMenu popup;

JMenuItem copyItem, pasteItem;

public MouseSample() {

......

}

部品のオブジェクトの作成や表示はリスナのメソッド内で行うが、
変数宣言はクラスのフィールドとして行う必要

ポップアップメニューの作成(4)
 マウスの右クリックでポップアップメニューを表示する例(続き)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 36

public void mousePressed(MouseEvent e) {

if (e.getButton() == MouseEvent.BUTTON3) {

popup = new JPopupMenu();

copyItem = new JMenuItem("コピー");

copyItem.addActionListener(this);

popup.add(copyItem);

pasteItem = new JMenuItem("貼り付け");
pasteItem.addActionListener(this);

popup.add(pasteItem);

popup.show(e.getComponent(), e.getX(), e.getY());

}

}

JPopupMenuの作成
 JMenuItemはオブジェクトを作成して、

JPopupMenuのオブジェクトに登録

マウスの右ボタンを押されたときの処理として定義

JPopupMenuオブジェクトの表示
 「e.getComponent()」でマウス操作が行われ
た部品を取得
 ポップアップメニューの表示先

 「e.getX()」と「e.getX()」でマウス操作が
行われたx座標・y座標を取得
 ポップアップメニューを表示するx座標・

y座標

7

ポップアップメニューの作成(5)
 マウスの右クリックでポップアップメニューを表示する例(続き)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 37

public void actionPerformed(ActionEvent e) {

if (e.getSource() == copyItem) {

/* ポップアップメニューのcopyItemが押されたときの処理 */

} else if (e.getSource() == pasteItem) {

/* ポップアップメニューのpasteItemが押されたときの処理 */

} else if (e.getSource() == okBut) {

/* OKボタンが押されたときの処理 */
}

}

}

ポップアップメニューの項目が選択されたときの処理
 ウィンドウ上の他の部品(JButtonなど)とあわせて、

if文で条件分岐

ポップアップメニューの作成(6)
 ちなみに...JTextFieldとJTextAreaで切り取り(カット)・コピー・貼り付け

(ペースト)を行うには...

 cut()メソッド: 選択された文字列を切り取り(カット)するメソッド

 copy()メソッド: 選択された文字列をコピーするメソッド

 paste()メソッド: 選択された文字列を貼り付け(ペースト)するメソッド

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 38

ポップアップメニューの作成(7)
 コピー&ペースト処理の記述例(JTextFieldがウィンドウ内に1つの場合)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 39

import java.awt.event.*;

import javax.swing.*;

public class MouseSample extends JFrame implements ActionListener, MouseListener {

JPopupMenu popup;

JMenuItem copyItem, pasteItem;

JTextField addressText;

......

public void actionPerformed(ActionEvent e) {

if (e.getSource() == copyItem) { /* ポップアップメニューのcopyItemが押されたときの処理 */

addressText.copy();

} else if (e.getSource() == pasteItem) { /* ポップアップメニューのpasteItemが押されたときの処理 */

addressText.paste();

}

}
}

入力フィールドがウィンドウ内に複数ある場合は?(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 40

import java.awt.event.*;

import javax.swing.*;

import javax.swing.text.*;

public class MouseSample extends JFrame

implements ActionListener, MouseListener {

JPopupMenu popup;
JMenuItem copyItem, pasteItem;

JTextField addressText;

JTextComponent textComp;

......

public void mousePressed(MouseEvent e) {

if (e.getButton() == MouseEvent.BUTTON3) {

......

popup.show(e.getComponent(), e.getX(), e.getY());

textComp = (JTextComponent) e.getSource();
}

}

public void actionPerformed(ActionEvent e) {

if (e.getSource() == copyItem) {

/* ポップアップメニューのcopyItemが押されたときの処理 */

textComp.copy();

} else if (e.getSource() == pasteItem) {

/* ポップアップメニューのpasteItemが押されたときの処理 */

textComp.paste();
}

}

}

入力フィールドがウィンドウ内に複数ある場合は?(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 41

public void actionPerformed(ActionEvent e) {

if (e.getSource() == copyItem) {

/* ポップアップメニューのcopyItemが押されたときの処理 */

textComp.copy();

} else if (e.getSource() == pasteItem) {

/* ポップアップメニューのpasteItemが押されたときの処理 */

textComp.paste();
}

}

}

import java.awt.event.*;

import javax.swing.*;

import javax.swing.text.*;

public class MouseSample extends JFrame

implements ActionListener, MouseListener {

JPopupMenu popup;
JMenuItem copyItem, pasteItem;

JTextField addressText;

JTextComponent textComp;

......

public void mousePressed(MouseEvent e) {

if (e.getButton() == MouseEvent.BUTTON3) {

......

popup.show(e.getComponent(), e.getX(), e.getY());

textComp = (JTextComponent) e.getSource();
}

}

JTextComponent: JTextFieldとJTextAreaの親クラス
 javax.swing.textというパッケージに分類
 どのJTextField/JTextAreaでポップアップメニューが表示されたか
を記憶しておくための変数

入力フィールドがウィンドウ内に複数ある場合は?(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 42

public void actionPerformed(ActionEvent e) {

if (e.getSource() == copyItem) {

/* ポップアップメニューのcopyItemが押されたときの処理 */

textComp.copy();

} else if (e.getSource() == pasteItem) {

/* ポップアップメニューのpasteItemが押されたときの処理 */

textComp.paste();
}

}

}

import java.awt.event.*;

import javax.swing.*;

import javax.swing.text.*;

public class MouseSample extends JFrame

implements ActionListener, MouseListener {

JPopupMenu popup;
JMenuItem copyItem, pasteItem;

JTextField addressText;

JTextComponent textComp;

......

public void mousePressed(MouseEvent e) {

if (e.getButton() == MouseEvent.BUTTON3) {

......

popup.show(e.getComponent(), e.getX(), e.getY());

textComp = (JTextComponent) e.getSource();
}

}

入力フィールド上でマウスの右ボタンが押されたときの処理
 その1: ポップアップメニューを表示する
 その2: textComp変数に、どの入力フィールド上でマウスの右ボタ
ンが押されたかを設定
 「e.getSource()」で、どの部品で操作が行われたかを取得
 操作された部品を「JTextComponent」でキャストして

textComp変数に代入

8

入力フィールドがウィンドウ内に複数ある場合は?(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 43

public void actionPerformed(ActionEvent e) {

if (e.getSource() == copyItem) {

/* ポップアップメニューのcopyItemが押されたときの処理 */

textComp.copy();

} else if (e.getSource() == pasteItem) {

/* ポップアップメニューのpasteItemが押されたときの処理 */

textComp.paste();
}

}

}

import java.awt.event.*;

import javax.swing.*;

import javax.swing.text.*;

public class MouseSample extends JFrame

implements ActionListener, MouseListener {

JPopupMenu popup;
JMenuItem copyItem, pasteItem;

JTextField addressText;

JTextComponent textComp;

......

public void mousePressed(MouseEvent e) {

if (e.getButton() == MouseEvent.BUTTON3) {

......

popup.show(e.getComponent(), e.getX(), e.getY());

textComp = (JTextComponent) e.getSource();
}

}

textCompの部品に対し、コピーやペーストの処理を行う
 この処理が行われる前に、ポップアップメニューが
表示されている

 ポップアップメニューが表示された部品がtextComp
変数に設定されている

簡易メッセージ・入力欄の表示

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 44

簡易メッセージ・入力欄
 ちょっとしたメッセージや入力をしたい!

確認メッセージ

警告メッセージ

 エラーメッセージ

 1つだけ入力

 etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 45

いちいちウィンドウを作るのは面倒!

JOptionPane

JOptionPane(概要)
 1行だけのメッセージや入力欄を簡易表示するためのウィンドウ

 OK/CancelボタンやYes/Noボタンつき

表示内容によって異なるメソッド利用

 メソッドにメッセージ内容などを引数として設定

 JOptionPaneが表示されているときは、他のウィンドウの操作不可

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 46

JOptionPane(showMessageDialog)
 1行のメッセージを表示

 OK/CancelやYes/Noなどの利用者の判断を求めないメッセージ(戻り値なし)

引数は4つ

 1つ目の引数: 常に「null」(ウィンドウの表示先を表すが、通常はnullにしておく)

 2つ目の引数: 表示するメッセージ(String型)

 3つ目の引数: ウィンドウのタイトル(String型)

 4つ目の引数: メッセージのタイプ(タイプによって表示されるアイコンが違う)

 JOptionPane. ERROR_MESSAGE: エラーメッセージ

 JOptionPane.INFORMATION_MESSAGE: 情報を提示

 JOptionPane.WARNING_MESSAGE: ワーニングメッセージ

 JOptionPane.QUESTION_MESSAGE: 質問メッセージ

 JOptionPane.PLAIN_MESSAGE: アイコンなしでメッセージを表示
Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 47

JOptionPane(showMessageDialog)(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 48

JOptionPane.showMessageDialog(null, "入力されたものは数ではありません。", "エラー", JOptionPane.ERROR_MESSAGE);

INFORMATION_MESSAGE QUESTION_MESSAGE PLAIN_MESSAGEWARNING_MESSAGE

9

JOptionPane(showConfirmDialog)(1)
 1行のメッセージを表示

 OK/CancelやYes/Noなどの利用者の判断を求めるメッセージ

戻り値(int型)によって、どのボタンが押されたかを取得

 JOptionPane.OK_OPTION: OKボタンが押されたときの戻り値

 JOptionPane.CANCEL_OPTION: Cancelボタンが押されたときの戻り値

 JOptionPane.YES_OPTION: Yesボタンが押されたときの戻り値

 JOptionPane.NO_OPTION: Noボタンが押されたときの戻り値

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 49

int型の変数を用意して戻り値を受け取り、if文で条件分岐して処理

JOptionPane(showConfirmDialog)(2)
引数は5つ

 1つ目の引数: 常に「null」(ウィンドウの表示先を表すが、通常はnullにしておく)

 2つ目の引数: 表示するメッセージ(String型)

 3つ目の引数: ウィンドウのタイトル(String型)

 4つ目の引数: OK/CancelやYes/Noのボタンのタイプ

 JOptionPane.OK_CANCEL_OPTION: OK/Cancelボタンを表示

 JOptionPane.YES_NO_OPTION: Yes/Noボタンを表示

 JOptionPane.YES_NO_CANCEL_OPTION: Yes/No/Cancelボタンを表示

 5つ目の引数: メッセージのタイプ(タイプによって表示されるアイコンが違う)

種類はshowMessageDialogメソッドと同じ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 50

JOptionPane(showConfirmDialog)(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 51

int code = JOptionPane.showConfirmDialog(null, "続行しますか?", "質問",

JOptionPane.OK_CANCEL_OPTION, JOptionPane.WARNING_MESSAGE);

JOptionPane.YES_NO_CANCEL_OPTIONJOptionPane.YES_NO_OPTION

JOptionPane(showInputDialog)
 1行の入力欄を表示

戻り値は入力された文字列(String型)

 String型の変数を用意して戻り値を受け取り

引数は4つ

 1つ目の引数: 常に「null」(ウィンドウの表示先を表すが、通常はnullにしておく)

 2つ目の引数: 表示するメッセージ(String型)

 3つ目の引数: ウィンドウのタイトル(String型)

 4つ目の引数: メッセージのタイプ(タイプによって表示されるアイコンが違う)

種類はshowMessageDialogメソッドと同じ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 52

JOptionPane(showInputDialog)(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 53

String name =

JOptionPane.showInputDialog(null, "名前を入力してください。", "名前入力", JOptionPane.QUESTION_MESSAGE);

お絵描き～準備編～

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 54

10

お絵描きをするには?
 プログラムでの「紙」にあたるもの: JFrameまたはJPanel

 JFrameやJPanelの上に、座標を指定して、絵を描いていく

楕円

四角形

線

 etc.

絵を描くには、JPanelの方がオススメ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 55

「紙」の準備(1)
 「ただの」JPanelの上に絵を描くと、ウィンドウを操作すると、
絵が消えてしまう

 ウィンドウの最小/最大化、別のウィンドウを重ねる, etc.

 JPanelは画面に表示された瞬間に、JPanelの「paintComponent」
メソッドで、絵が描かれる

何も設定をしていなければ、JPanelをグレーに塗りつぶすだけ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 56

※これらは、JFrameも同様

「紙」の準備(2)
 ウィンドウの操作がされるたびに「paintComponent」が呼び出される

描いた絵が消されないようにするには?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 57

「paintComponent」を定義しなおす

グレーに塗りつぶされる = 描いた絵が消える

=ウィンドウの操作がされると、定義しなおされた 「paintComponent」が
呼び出される

=ウィンドウの操作がされると、もう一度同じ絵が描かれる

=絵が消えない

JPanelを継承して「paintComponent」をオーバーライド

JPanelを継承して...?(1)
 ファイルを1つ作成する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 58

import java.awt.*;

import java.io.*;

import java.lang.*;

import javax.swing.*;

public class クラス名 extends JPanel {

public void paintComponent(Graphics g) {

}

}

JPanelを継承したクラス

JPanelの継承

JPanel上に絵を描くメソッド
JPanelに描く絵の内容

JPanelを継承して...?(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 59

import java.awt.*;

import java.io.*;

import java.lang.*;
import javax.swing.*;

public class クラス名 extends JPanel {
public void paintComponent(Graphics g) {

}

}

JPanelを継承したクラス

 「g」は、「Graphics」というクラスのオブジェクトで、JPanel専用の
ペンの役割をする

 絵を描くときは、「ペン」に対して、どのような絵を描くか命令をする

プログラム本体は?
書き方は通常のGUIプログラムと同じ

絵を描くために使うJPanelのみ、自分で作成したクラスを利用すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 60

public 本体のクラス名 extends JFrame {
JFrame frame;

JButton but1, but2;

描画用パネルクラス名 canv;
public 本体のクラス名 {

.

canv = new 描画用パネルクラス名();
.

}
public static void main(String[] args) {

new 本体のクラス名();

}
}

11

お絵描き～本編～

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 61

お絵描きのためのメソッド
絵を描くときは、JPanel専用の「ペン」に対する命令を記述
→「ペン」の役割をする「Graphics」クラスに、絵を描くためのメソッドが
用意されている

 「draw」で始まるメソッド: 四角形や円などを塗りつぶさずに描く

 「fill」で始まるメソッド: 四角形や円などを塗りつぶして描く

絵を描くときは、各部品の左上隅の点の座標と縦横の大きさを
指定

 X座標は右方向、Y座標は下方向

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 62

メソッド例(1)
 drawRect(int x, int y, int width, int height)

四角形を描く(fillRectも同様)

 x, y: 左上の点のx座標とy座標

 width, height: 四角形の幅と高さ

 drawOval(int x, int y, int width, int height)

楕円を描く(fillOvalも同様)

 x, y: 左上の点のx座標とy座標

 width, height: 楕円の幅と高さ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 63

ただし、楕円を四角形で囲んだときの、
四角形の座標と幅・高さ

座標(x, y)

width

height

メソッド例(2)
 drawString(String str, int x, int y)

文字列の描画

 str: 描画する文字列

 x, y: 文字列の左上の点のx座標とy座標

 draw3DRect(int x, int y, int width, int height, boolean raised)

 3Dで強調表示される四角形の描画(fill3DRectも同様)

 x, y: 左上の点のx座標とy座標

 width, height: 四角形の幅と高さ

 raised: 「true」で浮き出たように見え、「false」で彫り込まれたような感じ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 64

メソッド例(3)
 drawLine(int x1, int y1, int x2, int y2)

線の描画

 x1, y1: 線の開始点のx座標とy座標

 x2, y2: 線の終了点のx座標とy座標

 drawPolyline(int[] xPoints, int[] yPoints, int nPoints)

折れ線の描画

 xPoints, yPoints: 折れ線の開始点, 折れる点, 終了点を配列に格納したもの

 nPoints: 配列の中からいくつの点を使って折れ線を描くか

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 65

メソッド例(4)
 drawPolygon(int[] xPoints, int[] yPoints, int nPoints)

多角形の描画(fillPolygonも同様)

 xPoints, yPoints: 多角形の折れ線の開始点, 折れる点, 終了点を配列に
格納したもの

 nPoints: 配列の中からいくつの点を使って多角形を描くか

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 66

12

メソッド例(5)
 drawArc(int x, int y, int width, int height, int startAngle, int

arcAncle)

楕円弧の描画(fillArcも同様)

 x, y: 描画される孤の左上の点のx座標とy座標

 width, height: 描画される孤の幅と高さ

 startAngle: 開始角度

 arcAngle: 開始角度に対する弧の展開角度の大きさ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 67

メソッド例(6)
 drawRoundRect(int x, int y, int width, int height, int arcWidth,

int arcHeight)

角の丸い四角形の描画(fillRoundRectも同様)

 x, y: 描画される四角形のx座標とy座標

 width, height: 描画される四角形の幅と高さ

 arcWidth: 4 隅の弧の水平方向の直径

 arcHeight: 4 隅の弧の垂直方向の直径

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 68

メソッド使用例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 69

public void CanvasPanel extends JPanel {

public void paintComponent(Graphics g) {

g.fillRect(5, 5, 390, 290); /* 四角形の描画 */

g.fillOval(5, 5, 390, 290); /* 楕円の描画 */

int[] x1 = {200, 5, 390}; /* 三角形の頂点のx座標の配列 */
int[] y1 = {5, 150, 150}; /* 三角形の頂点のy座標の配列 */

g.fillPolygon(x1, y1, 3); /* 三角形の描画 */

int[] x2 = {200, 5, 390}; /* 三角形の頂点のx座標の配列 */

int[] y2 = {290, 150, 150}; /* 三角形の頂点のy座標の配列 */

g.fillPolygon(x2, y2, 3); /* 三角形の描画 */
}

}

色をつける
 「setColor」というメソッドで、ペンの色を変更

 ペンの色は1度変えると、その後もずっと同じ色

ある部品を赤で描き、その次の部品を元の色で描きたい場合には、赤で部品を
描いた後に、「setColor」でペンの色を黒に戻すことが必要

 「setColor」の引数は「Color」というクラスのオブジェクト

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 70

色を使う
色を扱うクラス: Color

色の使い方その1: Javaで指定されている色を使う

 Color.色の名前

色の使い方その2: RGBカラーを使う

 「new Color(int r, int g, int b)」で色を作成する

 r: 赤成分(0～255)

 g: 緑成分(0～255)

 b: 青成分(0～255)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 71

Javaでの色の名前
 Color.black

 Color.blue

 Color.cyan

 Color.darkGray

 Color.gray

 Color.green

 Color.lightGray

 Color.magenta

 Color.orange

 Color.pink

 Color.red

 Color.white

 Color.yellow

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 72

13

RGBカラー
 コンピュータの色: 赤(Red), 緑(Green), 青(Blue)の光から全ての色を
表現する

 それぞれ256段階の濃淡があり、それを混ぜ合わせて色を表現する

混ぜ合わせる赤, 緑, 青の濃さの段階を数値で表す

 255が最も濃く、0が最も淡い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 73

例えば...
赤: 255, 緑: 0, 青: 0 →
赤: 204, 緑: 153, 青: 255→

コンピュータでは
 赤, 緑, 青の256段階の濃淡の数値を16進数で表す
 16進数で表した数値を赤・緑・青の順に2桁ずつでならべ、「#」を先頭に付けて
色の名前として使う

RGBカラー

RGBカラーを使うには?
 「色見本」などのキーワードで、色のサンプルリストを探す

色のサンプルリストから、好きな色を選択する

色のサンプルリストは、「#」つきの色の名前が示されていることが多い

 「#」つきの色の名前を、10進数の赤・緑・青の数値に直して、
Colorクラスのコンストラクタに設定する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 74

16進数(1)
数を16個の文字で表す方法

普段は10進数(数を10個の文字で表す方法)

 10進数の「16」を、16進数では「10」と表記

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, fの16個の文字で表現

 「a」が10進数の10, 「b」が10進数の11, 「c」が10進数の12, 「d」が10進数の13,

「e」が10進数の14, 「f」が10進数の15

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 75

16進数での色の表現
 「#」を最初につけ、R(赤)、G(緑)、B(青)の順に16進数で2桁ずつで表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 76

#0066cc

赤成分
(0)

青成分
(204)

緑成分
(102)

16進数の色の名前を10進数に直す
1. 「#」の後の6桁の16進数を2桁ずつに分解する

 左側から赤・緑・青の数値になる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 77

#0066CC 00 CC

赤成分

66

緑成分 青成分

16進数の色の名前を10進数に直す
2. アルファベットを10進数に直す

 A → 10

 B → 11

 C → 12

 D → 13

 E → 14

 F → 15

※アルファベットの大文字・小文字は関係なし

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 78

00
66

CC

0 0
6 6

12 12

14

16進数を10進数に変換
3. 2. の数の1桁目の上に「160」、2桁目の上に「161」と書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 79

0 0

6 6

12 12
161 160

161 160

161 160

16進数を10進数に変換
4. 各桁の上の「16n」と、それぞれの桁の数をかけあわせる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 80

0 0

6 6

12 12

161 160

161 160

161 160

× ×

× ×

× ×

0 0

6×16 6×1

12×16 12×1

16進数を10進数に変換
5. 4. の各桁の数を足し合わせる

6. 赤・緑・青成分の10進数をColorクラスのコンストラクタに設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 81

0 0

6×16 6×1

12×16 12×1

赤成分の10進数

緑成分の10進数

青成分の10進数

new Color(0 , 102 , 204)

0 + 0 = 0

6×16+6×1 = 102

12×16+12×1 = 204

色を使う(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 82

public void paintComponent(Graphics g) {

g.setColor(new Color(0, 0, 255)); /* 青色の四角形を描く */

g.fillRect(5, 5, 390, 290);

g.setColor(new Color(0, 255, 0)); /* 緑色の楕円を描く */

g.fillOval(5, 5, 390, 290);

int[] x1 = {200, 5, 390};

int[] y1 = {5, 150, 150};

g.setColor(Color.yellow); /* 黄色の三角形を描く */
g.fillPolygon(x1, y1, 3);

int[] x2 = {200, 5, 390};

int[] y2 = {290, 150, 150};

g.setColor(Color.cyan); /* シアン色の三角形を描く */
g.fillPolygon(x2, y2, 3);

}

キャンバスの「paintComponent」メソッド

例～写して実行してみよう!～(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 83

public class DrawPicture extends JFrame{

CanvasPanel canv;

public DrawPicture() {

canv = new CanvasPanel();

getContentPane().add(canv);

setTitle("お絵かき");

setSize(410, 340);
setDefaultCloseOperation(Jframe.EXIT_ON_CLOSE);

setVisible(true);

}
public static void main(String[] args) {

new DrawPicture();

}
}

メインのプログラム

例～写して実行してみよう!～(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 84

public class CanvasPanel extends JPanel {

public void paintComponent(Graphics g) {

g.setColor(new Color(0, 0, 255));

g.fillRect(5, 5, 390, 290);

g.setColor(new Color(0, 255, 0));

g.fillOval(5, 5, 390, 290);

int[] x1 = {200, 5, 390};

int[] y1 = {5, 150, 150};

g.setColor(Color.yellow);

g.fillPolygon(x1, y1, 3);

int[] x2 = {200, 5, 390};

int[] y2 = {290, 150, 150};

g.setColor(Color.cyan);

g.fillPolygon(x2, y2, 3);
}

}

描画領域のクラス

15

補講と期末試験のお知らせ
期末試験: 1月29日(火) 2限 24102教室

時間: 90分

持ち込み: 全て可

内容: 後期の講義内容すべて

用語の意味の選択・説明

概念に関する説明

実技

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 90

