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第11回
ちょっと高度なGUIの部品, レイアウトマネージャ
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第11回の内容
 ちょっと高度なGUIの部品

 メニュー

 リストボックス

 レイアウトマネージャ
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前回の出席課題の解答
 コンビニの商品管理プログラムを考えるとき、下記のクラスを作る場合に、
どのような継承関係にすれば良いか、考えて答えなさい。

商品, パン, アイス, ドリンク, コーヒー, ジュース, お茶
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 親クラス: 商品, 子クラス: パン, アイス, ドリンク
 親クラス: ドリンク, 子クラス: コーヒー, ジュース, お茶

解答

前回の復習
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GUIとは
 GUI: Graphical User Interface

人間がソフトウェアとのやりとりの接点を視覚的に表現したもの

ボタンや入力フィールドでソフトウェアを操作

ソフトウェアからの処理結果の提示

 etc.

 Graphical: 視覚的

 User: 人間の利用者

 Interface: ものとものとの接点(人間とソフトウェアとの間に限らず)
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ウィンドウの作り方の基本
1. ウィンドウ内の構成(ボタンや入力フィールドなどの配置を決める)

2. 「JFrame」というウィンドウの土台を作る

3. 土台の上に、ボタンなどのGUIの部品を配置していく

 配置は、座標で指定する(前回は)

 x座標は右方向

 y座標は下方向(グラフの座標軸とは逆)
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部品の作り方
部品は、一種のデータ型(クラス)

部品: ボタンや入力フィールドなどの1つ1つのGUIの要素

 1つ1つの部品の変数を宣言する

部品の作成 = 部品のオブジェクト作成

部品名 変数名=new 部品名();

作成した部品に、いろいろな情報を設定する(部品を置く位置や大きさ、
部品の見た目上の名前など)

作成した部品をJFrameに貼り付ける

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 7

※JFrameも部品の1つ

GUIプログラムの基本形(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 8

import  java.io.*;
import  java.lang.*;
import  javax.swing.*;

public  class  クラス名 extends JFrame {
部品の変数の宣言

public  クラス名() {
getContentPane().setLayout(null);

setTitle(タイトルバーに表示する名前);
setSize(横の長さ, 縦の長さ);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

}
public  static  void main(String[]  args) {

new  クラス名();
}

}

JFrame以外の部品を作成したり情報を設定する領域

部品の扱い方
部品に対しては、様々な操作をすることができる

見た目の名前をつける

貼り付ける座標や大きさを決める

 etc.

部品に対して様々な操作を行うために、メソッドが用意されている

 ウィンドウ中に1つ部品を作るにあたり、その部品のオブジェクトを1つ
作成する

部品はJavaでクラスとしてあらかじめ提供されている

 「部品の変数名.メソッド名(引数)」で部品に対する設定を行う
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1部品につき1オブジェクト
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JButton okBut;
....
okBut = new JButton();
okBut.setText("OK");
...

JButton cancelBut;
....
cancelBut = new JButton();
cancelBut.setText("Cancel");
...

1つの部品につき、1つ変数を宣言をしてオブジェクトを作成、設定が必要

部品作成・ウィンドウ表示処理の順序
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public  class  CakeWindow extends  JFrame {
JLabel label;
JComboBox combo;
JButton ok,  cancel;

public  CakeWindow() {
getContentPane().setLayout(null);

label = new JLabel();  /* JLabelの作成 */
label.setText("ケーキの選択");
label.setBounds(10, 5, 280, 25);
getContentPane().add(label); 

.... 略 ....

setTitle("ケーキの選択");
setSize(300, 140);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

}

ウィンドウの表示処理

個々の部品作成とウィンドウへの貼り付け

 ウィンドウ上への部品の配置は、コンピュータの
処理では、部品の絵を描くようなもの

 ウィンドウを表示したときに、描画処理

ウィンドウを表示後に部品を配置しても、
描画処理が行われない

配置した部品が表示されない

「setVisible(true);」の
処理は一番最後に!

座標計算(1)
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このJLabelの左上隅の座標は
x座標: 10, y座標; 5

幅: 280, 高さ: 25なので、このJLabelの
右下端の座標はx座標: 290, y座標: 30

上のJLabelが、y座標が30まであるので、このJComboBoxの
左上端のy座標は30以上にしないと、上のJLabelと重なる
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座標計算(2)
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このJButtonの左上隅の座標は
x座標: 70, y座標; 75

幅: 100, 高さ25なので、このJButtonの
右下端の座標はx座標: 170, y座標: 100

左のJButtonが、x座標が170まであるので、このJButtonの
左上端のx座標は170以上にしないと、左のJButtonと重なる

部品の座標は、上下左右に隣接する部品の四隅の座標を計算した上で
決定すること(でないと、隣接する部品に重なってしまうので注意)

ちょっと高度なGUIの部品
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メニューバー(1)
 クリックすることでメニューが表示され、選択すると何か処理を行うための
部品

 JMenuBar, JMenu, JMenuItemという3種類の部品で構成
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JMenuBarJMenu
(ファイル, 編集)

JMenuItem
(開く, 保存など)

メニューバー(2)
 メニューバー作成の手順:

1. JMenuBarを作成し、フレームに貼り付ける

 1つのフレームにJMenuBarは1つしかつけられない

2. JMenuを作成し、JMenuBarに貼り付ける

 JMenuはいくつでもよい

プログラム中に書いた順に、メニューバーの左から並んで貼りつけられる

3. JMenuItemを作成し、JMenuに貼り付ける

 JMenuItemはいくつでもよい

プログラム中に書いた順に、上から並んで貼りつけられる
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メニューバー～1. JMenuBarを作る～

 JMenuBarの作り方は、ボタンなど他の部品と同じ

 JMenuBarのフレームへの貼り付け方: 
setJMenuBar(JMenuBarの変数名)
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例
public  class  MenuSample extends  JFrame {

JMenuBar  bar;
public MenuSample() {

. . . . . .
bar = new JMenuBar();
setJMenuBar(bar);
. . . . . .

}
}

メニューバー～2. JMenuを作成する～

 JMenuの作り方は、ボタンなどの他の部品と同じ

 JMenuの文字列の設定: setText("文字列")

 JMenuBarへのJMenuの貼り付け方: 
JMenuBarの変数名.add(JMenuの変数名)
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例 public  class  MenuSample extends  JFrame {
JMenuBar bar;
JMenu file, edit;
public MenuSample() {

. . . . . .
file = new JMenu();
file.setText("ファイル");
bar.add(file);
. . . . . .

}
}
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メニューバー～3. JMenuItemを作成する～

 JMenuItemの作り方は、ボタン等の他の部品と同じ

 JMenuItemの文字列の設定: 
JMenuItemの変数名.setText("文字列")

 JMenuへのJMenuItemの貼り付け方:
JMenuの変数名.add(JMenuItemの変数名)
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例 public  class  MenuSample extends  JFrame {
JMenu  file;
JMenuItem open, save;
public MenuSample() {

. . . . . .
open = new JMenuItem();
open.setText("開く");
file.add(open);
. . . . . .

}
}

リストボックス
項目を縦に並べるためのボックス

部品の名前: JList

 JListの作り方(JFrameへの貼り付け方は、他と同じ):

1.JListで表示させる項目の一覧を、配列として用意する

配列はString型

2.JListのコンストラクタの引数として、
項目一覧の配列を与える
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public  class  ListSample extends  JFrame {
JList colorList;
public  ListSample() {

String[]  colors = new String[100];
colors[0] = "red";
colors[1] = " blue";
. . . . . .
colorList = new JList(colors);
. . . . . . 

}
}

例

スクロールバー(1)
部品の名前: JScrollPane(スクロールバーを持った敷物)

 スクロールバーのつけ方:

 スクロールバーをつけたい部品(JList, JTextAreaなど)を作成する

 JScrollPaneのコンストラクタの引数として、スクロールバーをつけたい部品を
与える

 JScrollPaneをフレームに貼り付ける
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※JList, JTextAreaなどの、スクロールバーをつけたい部品は、
JScrollPaneに貼り付けるので、フレームには貼り付けない

スクロールバー(2)
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public  class  ListSample extends  JFrame {
JList colorList;
JScrollPane scroll;
public  ListSample() {

. . . . . . 
String[]  colors = new String[100];
. . . . . .
colorList = new  JList(colors);
scroll = new  JScrollPane(colorList);
scroll.setBounds(5, 5, 200, 100);
getContentPane().add(scroll)
. . . . . .

}
}

例

位置と大きさを設定し、フレームに
貼り付けるのは、JScrollPaneのみ

レイアウトマネージャ
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レイアウトマネージャって?
 GUIの部品の位置や大きさを管理してくれる機能

部品の位置や大きさを決める枠組みを作り、それぞれの部品がどの枠に
収まるかを指定することで位置や大きさを決定する

枠の並べ方でいくつか種類あり

利点: 部品の座標や大きさを計算しなくてよい

欠点: 慣れなければ使いこなすのが難しく、細かい設定はできない
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JFrameやJPanelなどの部品を配置するための部品に対して、枠を設定する

※JFrameに関しては、大きさの設定は必要
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レイアウトマネージャの設定方法
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import  java.awt.*;
import  javax.swing.*;

public  class  クラス名 extends JFrame {
public  クラス名() {
getContentPane().setLayout( レイアウトマネージャのオブジェクト );

. . . . . .

setTitle(タイトルバーに表示する名前);
setSize(横の長さ, 縦の長さ);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

}
}

「null」と書くと、レイアウトマネージャを使わないこととなり、
部品の座標と大きさを指定する

レイアウトマネージャを使うためのパッケージ

よく使われるレイアウトマネージャ
 BorderLayout

 GridLayout

 FlowLayout
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BorderLayout(1)
部品を東、西、南、北、中央の5つの領域に配置する
レイアウトマネージャ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 27

北

南

西 東中央

BorderLayout(2)
部品を配置する枠を、東, 西, 北, 南, 中央で指定する

部品の大きさは、レイアウトマネージャが決定する

通常、中央が一番大きい

 ただし、BorderLayoutで配置する部品は5つより少ない、つまり

 WestとCenterに配置する部品だけ

 North, Center, Southに配置する部品だけ

などでもかまわない
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BorderLayout(使い方)
 JFrameやJPanelに対してレイアウトマネージャを設定: 

setLayout(new BorderLayout())

 JFrameやJPanelの上に部品置くとき: add(部品の変数名, 位置)
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位置は、
東: BorderLayout.EAST
西: BorderLayout.WEST
南: BorderLayout.SOUTH
北: BorderLayout.NORTH
中央: BorderLayout.CENTER

で指定

BorderLayout(例)
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getContentPane().setLayout(new BorderLayout());

b1 = new JButton("北");
getContentPane().add(b1, BorderLayout.NORTH);

b2 = new JButton("南");
getContentPane().add(b2, BorderLayout.SOUTH);

b3 = new JButton("東");
getContentPane().add(b3, BorderLayout.EAST);

b4 = new JButton("西");
getContentPane().add(b4, BorderLayout.WEST);

b5 = new JButton("中央");
getContentPane().add(b5, BorderLayout.CENTER);

setSize(300, 300);

※b1～b5はJButtonの変数
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GridLayout
部品を縦横に配置するレイアウトマネージャ

部品はすべて同じ大きさで配置される

配置する部品の縦と横の数を指定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 31

1 2

3 4

5 6

7 8

縦4つ、横2つ配置する場合

※番号は、配置していく順序
プログラムの上に書かれているものから順に配置される)

GridLayout(使い方)
 JFrameやJPanelに対してレイアウトマネージャを設定: 

setLayout(new GridLayout( 縦の数, 横の数 ))

 JFrameやJPanelの上に部品置くとき: add(部品の変数名)
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縦に並べる部品の数と横に並べる
部品の数を引数(int型)として書く

GridLayout(例)
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getContentPane().setLayout(new  GridLayout(2,3));

g1 = new JButton("1");
getContentPane().add(g1);
g2 = new JButton("2");
getContentPane().add(g2);
g3 = new JButton("3");
getContentPane().add(g3);
g4 = new JButton("4");
getContentPane().add(g4);
g5 = new JButton("5");
getContentPane().add(g5);
g6 = new JButton("6");
getContentPane().add(g6);

setSize(300, 150);

※g1～g6はJButtonの変数

FlowLayout
左から右に向かって部品を配置するレイアウトマネージャ

部品の大きさは、部品のラベル名などに応じてレイアウトマネージャが決定する

右端まで部品が埋まったら、次の行に配置
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1 2 3

4 5 ※番号は、配置していく順序
(プログラムの上に書かれているものから順に配置される)

FlowLayout(使い方)
 JFrameやJPanelに対してレイアウトマネージャを設定: 

setLayout(new FlowLayout())

 JFrameやJPanelの上に部品置くとき: add(部品の変数名)
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FlowLayout(例)
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getContentPane().setLayout(new  FlowLayout());

fr1 = new JButton("1");
getContentPane().add(fr1);
fr2 = new JButton("2");
getContentPane().add(fr2);
fr3 = new JButton("3");
getContentPane().add(fr3);

setSize(300, 100);

※fr1～fr3はJButtonの変数
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ちょっと複雑な配置は?
 レイアウトマネージャは、決められた枠に部品を置くことしかできない

決められた枠だけでは配置できないような、ちょっと複雑な配置は?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 37

JPanelを利用する

JPanel
 GUIの部品を置くための敷物

 GUIの部品を置いてしまったJPanelは、1つの部品として扱うことができる

 JPanelの中にさらにJPanelを入れ込むことも可能

 JPanel自体にもレイアウトマネージャを設定し、GUIの部品を配置する
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複数の部品をまとめて1つの部品として扱い、
レイアウトマネージャの枠にはめることもできる

物を箱に入れて整理するとき、箱の中にさらに箱を入れるというイメージ

JPanelの使い方
 「JPanel変数名 = new JPanel();」でオブジェクトを作成

 「JPanelの変数名.setLayout(レイアウトマネージャ);」で
レイアウトマネージャを設定

 「JPanelの変数名.add(部品の変数名);」で部品をJPanelに貼り付け
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JPanel 変数名;
. . . . . .
変数名 = new  JPanel();
変数名.setLayout(レイアウトマネージャ);
. . . . . .
変数名.add(panelの上に配置する部品の変数名)

JPanel利用の基本形

ちょっと複雑な配置の例(1)
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getContentPane().setLayout(new GridLayout(3,1));

label = new JLabel();
label.setText("URLを入力してください。");
getContentPane().add(label);

JFrame: GridLayout(縦3, 横1)

JLabel: JFrameに直接貼り付け

ちょっと複雑な配置の例(2)
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panel1 = new JPanel();
panel1.setLayout(new BorderLayout());
openLabel = new JLabel();
openLabel.setText("開く:");
panel1.add(openLabel, BorderLayout.WEST);

url = new JTextField();
panel1.add(url, BorderLayout.CENTER);
getContentPane().add(panel1);

 「開く:」のJLabelとJTextFieldをJPanelに
貼り付け

 JPanelをJFrameに貼り付け
(JPanelはBorderLayout)

ちょっと複雑な配置の例(3)
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panel2 = new JPanel();
panel2.setLayout(new FlowLayout());

ok = new JButton();
ok.setText("OK");
panel2.add(ok);
cancel = new JButton();
cancel.setText("キャンセル");
panel2.add(cancel);
ref = new JButton();
ref.setText("参照");
panel2.add(ref);
getContentPane().add(panel2);

setSize(350, 140);

 JButtonをJPanelに貼り付け
 JPanelをJFrameに貼り付け

(JPanelはFlowLayout)


