
情報処理技法
(Javaプログラミング)1

第4回
語句や文章を扱いたいときは?

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 1

第4回の内容
文字列の扱い方

前回の復習問題の解答
 (ア)～(オ)を埋めなさい。

プログラムでデータを扱う時には、データを「(ア)」と呼ばれる箱に入れて扱う。
「(ア)」には名前をつけ、あらかじめどのような種類の「(イ)」であるか、予告しておく。
この予告処理のことを「(ウ)」と呼ぶ。「(ア)」に具体的なデータを入れることを
「(エ)」と呼ぶ。そして、「(ア)」に入れられたデータを取り出して計算などに使うことを
「(オ)」と呼ぶ。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 3

解答:
(ア) 変数 (イ) データ型 (ウ) 宣言(する) (エ)代入(する) (オ)参照(する)

文字列の扱い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 4

文字列とは(p. 80)
文字を並べたもの

言葉や文章:
コンピュータにとっては1文字1文字が並んでいるもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 5

例えば...blue

人間: 青い「色」と解釈
コンピュータ: 最初に「b」があり、その次に「l」があり、その次に「u」があり、最後に「e」という

文字の並びと解釈

人間の考え方も、コンピュータにあわせる

コンピュータは意味をわかっているわけではない

文字列の扱い(p. 80)
文字列はいろいろな情報を持っている

文字の並び

文字列の長さ(文字の数)

文字列にはいろいろな操作ができる

n番目の文字を取り出す

m番目の文字からn番目の文字までで部分文字列を作る

文字列中の部分文字列を、別の文字列に置き換える

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 6

intやfloatなどの

数値とは扱い方が違う!

データ型(p. 81)
文字列のデータ型: String

変数を宣言する方法は、intやfloatなどと同じ

変数でない値を代入するときは、値を「"」で囲む

変数を代入するときは、「"」は不要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 7

String str1, str2;

最初の「S」は大文字、あとは小文字

str1 = "abc"; (「abc」は変数でない文字列)

str1 = str2; (「str2」はString型の変数)

※変数でない値は、日本語でもOK

文字列への値の代入
文字列は0文字以上で代入可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 8

 0文字の文字列: String str = "";
 1文字の文字列: String str = "a";
 2文字の文字列: String str = "ab";
...

文字列をつなげて文章を作る(p. 85)
2つ以上の文字列をつなげるとき: 「+」記号でつなげる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 9

例1: str1の値が「abc」、 str2の値が「def」のとき、
str3に、str1とstr2をつなげた「abcdef」を代入したい

例2: str1に「Hello」、 str2に「World」が入っているとき、
str3に「Hello, World!」を代入したい

str3 = str1 + str2;

str3 = str1 + ", " + str2 + "!";
スペース

※1文字でも、文字列として扱うことができる

String型のデータ(p. 82)
「"」で囲まれた言葉は、コンピュータにとってただの文字列

「"」で囲まれていない言葉は、コンピュータにとっては変数

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 10

String str:
str = "abc";
str = abc;
str = "abc" + def + "ghi";

ただの文字列なので問題なし

変数として扱われるので宣言をしていなければ
コンパイルエラー

ただの文字列なので問題なし
変数として扱われるので宣言をしていなければ
コンパイルエラー

「"」が必要なときと不要なときをきちんと使い分けよう!

文字列のつなげかた(p. 85)
1. できあがりの文字列をイメージする

2. 変数・単なる文字列ごとに分解する

3. 変数や「"」つきの文字列に置き換える

4. 変数・単なる文字列の間に「+」をつける

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 11

金額は1000円です。

"金額は" payment "円です。"

"金額は" + payment + "円です。"

金額は 1000 円です。

エスケープシーケンス(1)(p. 83)
プログラム中で扱うには、いくつか特殊な文字が存在

Ex. 「Hello, "World"!」というデータを扱いたい場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 12

String sentence;

sentence = " Hello, " World " !";

ここからがデータと
しての文字列

ここまでがデータと
しての文字列 ???

「"」の区別がつかない
変数でない文字列を囲むための「"」
データとしての「"」(「World」を強調するための「"」)

エスケープシーケンス(2)(p. 83)
特殊な文字の区別

プログラム中で何らかの処理の一部を表す文字

普通に書く

単なるデータとしての文字列の一部を表す文字

特殊な表記で書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 13

改行, ¥, Tab, ", '

エスケープシーケンス

エスケープシーケンス(3)(p. 83)
改行: 「¥n」

Tab: 「¥t」

 "(ダブルクォーテーション): 「¥"」

¥: 「¥¥」

 '(アポストロフィー): 「¥'」

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 14

例:
Hello, "World"!
Nice to meet you!

I'm fine!

改行

Tab

String str = "Hello, ¥" World¥" ! ¥nNice to meet you! ¥n¥t I ¥' m fine!"

"(ダブルクォーテーション)

'(アポストロフィー)

考えてみよう!

教科書p. 111の例題01-02をやってみよう

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 15

文字列に対する操作(p. 87)
文字列を扱うために、Javaには様々なメソッドが用意されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 16

メソッドの形:

String型の変数.メソッド名(引数, 引数, …)
引数の順番と数、データ型は、それぞれのメソッドで決まっている
(「,」でつなげて書く)

メソッドは、様々な処理をしてその結果を返してくれる
→返してくれた結果(戻り値)を、変数に代入して使う(例えば、

int num=String型の変数.メソッド(…);
のようにして使う)
※戻り値のデータ型はメソッドによって決まっている

メソッド(p. 87)
プログラム中で行われる処理の手順をまとめたもの

複数の処理をまとめて、1つの名前を付けたもの

メソッド名、引数、戻り値から成る

メソッド名: メソッドの名前

引数: メソッドに渡す情報

戻り値: メソッドから返される処理結果

多くの場合、戻り値を変数に代入して利用する

「変数名 = メソッド」で、変数に戻り値が代入される

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 17

文字列の文字の数え方(p. 88)
プログラムでは、文字列の文字は0番目から数える

文字の順番を表す番号を「インデックス」と呼ぶ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 18

例えば...abcdefghij

a: 0番目
b: 1番目
c： 2番目
.....
j: 9番目

文字列の長さ(文字数)(p. 88)
「length()」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 19

文字列型の変数.length();

int型で結果をもらう

例:
int strLength;
String str1="abc";

strLength: str1の文字数
str1の長さを求めたいときは?

strLength=str1.length();

部分文字列の最初の出現場所(p. 89)
部分文字列が最初に出現する場所

部分文字列: 文字列の一部

「indexOf(str)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 21

文字列型の変数.indexOf(str);

int型で結果をもらう
「str」は探したい部分文字列 (String型)

例:
int index;
String str1="abcdefabcabcab";

str1での「abc」が最初に出てくる位置を求めたいときは?
(答え: 0)

index=str1.indexOf("abc");

※探したい文字列がなかったときは、結果が「-1」になる

部分文字列の出現場所(p. 91)
あるインデックス以降で、部分文字列が最初に出現する場所

「indexOf(str, n)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 22

文字列型の変数.indexOf(str, n);

int型で結果をもらう
「str」は探したい部分文字列 (String型)
「n」は、調べ始めるインデックス

例:
int index;
String str1="abcdefabcabcab";

str1のインデックス1以降で、「abc」が最初に出てくる位置を求めたいときは?
(答え: 6) index=str1.indexOf("abc", 1);

※探したい文字列がなかったときは、結果が「-1」になる

部分文字列の最後の出現場所(p. 93)
部分文字列が最後に出現する場所

「lastIndexOf(str)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 23

文字列型の変数.lastIndexOf(str);

int型で結果をもらう
「str」は探したい部分文字列(String型)

例:
int index;
String str1="abcdefabcabcab";

str1での「abc」が最後に出てくる位置を求めたいときは?
(答え: 9)

index=str1.lastIndexOf("abc");

※探したい文字列がなかったときは、結果が「-1」になる

部分文字列の出現場所(p. 95)
あるインデックス以前で、部分文字列が最後に出現する場所

「lastIndexOf(str, n)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 24

文字列型の変数.lastIndexOf(str, n);

int型で結果をもらう
「str」は探したい部分文字列 (String型)
「n」は、調べ始めるインデックス

例:
int index;
String str1="abcdefabcabcab";

str1のインデックス8以前で、「abc」が最後に出てくる位置を求めたいときは?
(答え: 6) index=str1.lastIndexOf("abc", 8);

※探したい文字列がなかったときは、結果が「-1」になる

部分文字列(1-1)(p. 97)
m番目の文字からn番目の文字までで部分文字列

「substring(m, n+1)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 25

文字列型の変数.substring(m, n+1)

「文字列型の変数」: 元の文字列
String型で結果をもらう

 m: 部分文字列の最初の文字の、元の文字列でのインデックス(int型)
 n: 部分文字列の最後の文字の、元の文字列でのインデックス(int型)

例: 「abcdefghi」から、「def」という部分文字列を作りたい

 部分文字列の最初の文字: d
 「d」の元の文字列でのインデックス: 3

 部分文字列の最後の文字: f
 「f」の元の文字列でのインデックス: 5

mは3, nは5と考える

部分文字列(1-2)(p. 97)
m番目の文字からn番目の文字までで部分文字列

「substring(m, n+1)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 26

「文字列型の変数.substring(m, n)」とすると...
 「m」番目の文字は、新しい文字列に入る
 「n」番目の文字は、新しい文字列には入らない

m番目からn番目の文字列を作るときには、substringに「m」と「n+1」を渡す

文字列型の変数.substring(m, n+1)

「文字列型の変数」: 元の文字列
String型で結果をもらう

 m: 部分文字列の最初の文字の、元の文字列でのインデックス(int型)
 n: 部分文字列の最後の文字の、元の文字列でのインデックス(int型)

部分文字列(1-3)(p. 97)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 27

例:
String fullString="abcdefghi";
String shortString;

shortString=fullString.substring(3, 6);

注意: 文字列は、0番目から数える

fullStringの3番目から5番目の部分文字列を求めたいときは?
(答え: def)

部分文字列(2-1)(p. 99)
m番目から最後の文字列までで部分文字列

「substring(m)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 28

文字列型の変数.substring(m)

「文字列型の変数」: 元の文字列
String型で結果をもらう

m: 部分文字列の最初の文字の、元の文字列でのインデックス(int型)

例: 「abcdefghi」から、「e」以降の部分文字列を作りたい

 部分文字列の最初の文字: e
 「e」の元の文字列でのインデックス: 4

mは4と考える

部分文字列(2-2)(p. 99)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 29

例:
String fullString="abcdefghi";
String shortString;

shortString=fullString.substring(4);

注意: 文字列は、0番目から数える

fullStringの4番目以降の部分文字列を求めたいときは?
(答え: efghi)

2つの文字列を比較(p. 104)
「equals(str)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 30

文字列型の変数.equals(str);
「str」は等しいか比べたい文字列(String型)
boolean型で結果をもらう

例:
String str1="abcdef";
String str2="abcijk";

str1とstr2は同じ文字列?
(答え: false) str1.equals(str2);

※「str2」は変数でなくてもよい
つまり、「str1.equals("abcdef");」という書き方もOK

半角アルファベットを小文字化
「toLowerCase()」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 31

文字列型の変数.toLowerCase();

アルファベットが小文字になった結果をもらう
(もらう結果はString型)

例:
String upper="ABCDEF";
String lower;

upperを小文字にしたい
(答え: abcdef)

lower=upper.toLowerCase();

半角アルファベットを大文字化
「toUpperCase()」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 32

文字列型の変数.toUpperCase();
アルファベットが大文字になった結果をもらう
(もらう結果はString型)

例:
String lower="abcdefghi";
String upper;

lowerを小文字にしたい
(答え: ABCDEFGHI)

upper=lower.toLowerCase();

よくある使い方
 indexOf, lastIndexOf, substringを組み合わせて使う

ある文字で区切られた文字列を分解する場合など

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 33

例えば...「,」で区切られた3つの言葉を1つ1つの言葉として取り出す場合
(「apple, pine, banana」を「apple」と「pine」と「banana」に分解)

int m, n;
String first, second, last, original = "apple,pine,banana";
m = original.indexOf(",");
n = original.lastIndexOf(",");
first = original.substring(0, m);
second = original.substring(m + 1, n);
last = original.substring(n + 1);

やってみよう!
教科書p. 111の例題03-06をやってみよう

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 34

