
1

情報処理技法
(Javaプログラミング)1

第11回
エラーに対してどう対応する?

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 1

第11回の内容
例外処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 2

前回の復習問題の解答
下記のプログラムで、実行時にエラーが出る箇所と、その理由を
説明しなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 3

int i, sum = 0;

int score[] = {55, 90, 79, 82, 88};

for (i = 1; i <= 5; i = i + 1) {

sum = sum + score[i];

}

配列の要素数は5つなので、添え字は0～4しか使えないが、
for文で添え字が1～5を使うようになっている。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 4

例外への対処

プログラムで発生するエラー(p. 230)

プログラムの実行時に発生する可能性のあるエラー

配列で、利用可能な範囲外の添え字を使おうとしたとき

String型の値をint型に変換できないとき

Ex. 入力された文字列をint型に変換したいときに、「abc」という文字列が入力される、
など

入力しようとしたファイルが存在しないとき

数を0で割ろうとしたとき

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 5

プログラムを実行してみなければ、発生するかどうかわからないエラー
= コンパイル時には発見できないエラー

「例外」と呼ぶ

例外に対処するには?(p. 232)

 例外が発生すると...

 プログラムの実行がその時点で終了してしまう

 例外を発生させないためには...?

1. 例外が発生しないよう、プログラムを書いておく

 完全には難しい(入力データなどは実行時でないと判断不可)

2. 例外に対処するための処理をプログラムに書いておく

 例外が発生しても、それなりの処理を行う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 6

例外処理

2

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 7

例外処理の書き方(基本形)(p. 232)

try {

}

catch (例外の種類を表すクラス名 変数名) {

}

例外が発生する可能性のある処理

例外が発生したときに行う処理

 tryを書いたら、必ずcatchも書かなければならない
 try文の中にcatchを書いてはならない
 tryの「}」の後、catchの前には何も書いてはならない

try～catch(p. 232)

try

例外が発生する可能性のある処理を、「try{～}」の間に書く

catch

tryの中の処理で例外が発生したときに、行われる処理を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 8

tryの処理(1)(p. 232)

例外が発生する可能性のある処理

標準入力の処理

ファイル入出力の処理

配列を扱う処理

文字列をint型に変換する処理

割り算の処理

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 9

Javaの文法上の規則として、例外処理を書かなければならないもの
(書かなければコンパイルエラー)

文法上の規則としては、例外処理を書く必要はないが、必要に応じて
自分の判断で例外処理を書くもの

tryの処理(2)(p. 232)

例外が発生する可能性のあるポイント

tryで、例外が発生する可能性のあるポイントをきちんと囲む必要

このポイントを囲んでいなければ、例外処理の意味はなし

標準入力やファイル入出力では、このポイントを囲んでいなければ、コンパイルエラー

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 10

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 11

例外処理の書き方(基本形)(p. 232)

try {

}

catch (例外の種類を表すクラス名 変数名) {

}

例外が発生する可能性のある処理

例外が発生したときに行う処理

例外にも様々な種類

catchの処理(例外の種類)(p. 233)

例外の種類を表すクラス名

例外には、様々な種類が存在

入出力に関係する例外(入出力ができなかった場合に例外が発生)

配列の添え字に関する例外(利用可能な範囲外の添え字を使おうとしたときに
例外が発生)

割り算に関する例外(数を0で割ろうとしたときに例外が発生)

tryで発生する可能性のある例外の種類を指定

適切な種類を指定しておかないと、例外処理ができない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 12

3

例外の種類(IOException)(1)(p. 238)

IOException

入出力に関する例外

標準入力・ファイル入力で、入力ができない場合

ファイル出力で、出力ができない場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 13

 標準入力: プログラムをターミナルから起動していない場合などは、入力不可能
 ファイル入力: 読み込もうとしたファイルが、「読み込み」のアクセス権がない場合などは
入力不可能

 書き込もうとしたファイルが、「書き込み」のアクセス権がない場合などは出力不可能

例外の種類(IOException)(2)(p. 238)

IOException

分類されているパッケージ: java.io

「import java.io.IOException」または「import java.io.*;」がなければコンパイルエラー

例外が発生する可能性の あるポイントが、tryの中に書かれていなければ、
コンパイルエラー

ポイント: readLine()メソッド, ファイルを開く処理など

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 14

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 15

例外の種類(IOException)(3)(p. 238)

String str;

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

try {

str = br.readLine();

}

catch (IOException e) {
}

標準入力

String str;

try {

FileReader fr = new FileReader("入力するファイルの名前");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();
br.close();

}

catch (IOException e) {

}

ファイル入力
例外が発生する可能性のあるポイント
(実際に入力をしているポイント)

発生する例外は入出力関係、と指定

例外の種類(ArithmeticException)(p. 240)

ArithmeticException

計算に関する例外

整数の割り算で、数を0で割ろうとした場合(小数の割り算でこの例外の発生はなし)

分類されているパッケージ: java.lang

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 16

int num1, num2, division;

String str1, str2;

str1 = br.readLine();

str2 = br.readLine();

num1 = Integer.parseInt(str1);

num2 = Integer.parseInt(str2);

try {

division = num1 / num2;

}

catch (ArithmeticException e) {

}

例外が発生する可能性のあるポイント
(割り算をしているポイント)

発生する例外は計算関係、と指定

例外の種類(StringIndexOutOfBoundsException)(p. 241)

StringIndexOutOfBoundsException

文字列における、文字の位置(インデックス)に関する例外

文字列において、実際には存在しない位置を指定した場合

分類されているパッケージ: java.lang

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 17

String sub, original = "abcdef";

try {

sub = original.substring(3, 10);

}

catch(StringIndexOutOfBoundsException e) {

}

例外が発生する可能性のあるポイント
(文字列での、文字のインデックスを指定しているポイント)

発生する例外は文字列のインデックス関係、と指定

例外の種類(NumberFormatException)(p. 242)

NumberFormatException

文字列の数値変換に関する例外

数値に変換することができない文字列を、変換しようとした場合

分類されているパッケージ: java.lang

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 18

String str;

int num;

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

try {

str = br.readLine();

num = Integer.parseInt(str);

}

catch (NumberFormatException e) {

}

例外が発生する可能性のあるポイント
(文字列を数値に変換しようとしているポイント)

発生する例外は文字列の数値変換の関係、と指定

4

例外の種類(ArrayIndexOutOfBoundsException)(p. 243)

ArrayIndexOutOfBoundsException

配列の添え字に関する例外

利用可能な範囲外の添え字を使おうとした場合

分類されているパッケージ: java.lang

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 19

int[] num = {10, 20, 30, 40, 50};

int i, sum = 0;

try {

for (i = 0; i < 10; i++) {

sum = sum + num[i];

}

}

catch (ArrayIndexOutOfBoundsException e) {

}

例外が発生する可能性のあるポイント
(i番目の配列、と配列に添え字をあてはめて使っているポイント)

発生する例外は配列の添え字関係、と指定

例外の種類(IndexOutOfBoundsException)

IndexOutOfBoundsException

ArrayListのインデックスに関する例外

利用可能な範囲外のインデックスを使おうとした場合

分類されているパッケージ: java.lang

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 20

ArayList<Integer> numList = new ArrayList<Integer>();

numList.add(1);

numList.add(2);

numList.add(3);

try {

int i, sum = 0;
for (i = 0; i <= 10; i = i + 1) {

sum = sum + numList.get(i);

}

catch(IndexOutOfBoundsException e) {

}

発生する例外はArrayListのインデックス関係、と指定

例外が発生する可能性のあるポイント
(i番目のインデックスの要素を取り出そうとしているポイント)

例外の種類(FileNotFoundException)(1)(p. 244)

FileNotFoundException

ファイルに関する例外

読み込もうとしたファイルが存在しない場合

分類されているパッケージ: java.io

「import java.io.FileNotFoundException」または「import java.io.*;」がなければ
コンパイルエラー

ただし、IOExceptionを使っていれば、FileNotFoundExceptionは不要

IOExceptionは、FileNotFoundExceptionも兼ねている

ファイルは存在しても読み書きできないのか、ファイルが存在自体しないのか、を
区別したいなどのときには両方利用する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 21 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 22

例外の種類(FileNotFoundException)(2)(p. 244)

String str;

try {

FileReader fr = new FileReader("入力するファイルの名前");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

}

catch (FileNotFoundException e) {

}

発生する例外はファイル関係、と指定

例外が発生する可能性のあるポイント
(ファイルの読み込みを決めているポイント)

例外が発生すると...

例外が発生した以降の処理が実行されない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 23

String str;

int num1, num2, sum;

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

try {

str = br.readLine();

num1 = Integer.parseInt(str);

str = br.readLine();

num2 = Integer.parseInt(str);

sum = num1 + num2;

}

catch (NumberFormatException e) {

}

Ex. ここで例外が発生する

この部分の処理が実行されない

実行されない部分の代わりになる処理をcatchに書く
Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 24

例外処理の書き方(基本形)(p. 232)

try {

}

catch (例外の種類を表すクラス名 変数名) {

}

例外が発生する可能性のある処理

例外が発生したときに行う処理

発生した例外についての
詳細な情報が格納される

5

catchの処理(変数)(p. 236)

変数名

発生した例外についての詳細な情報が格納される

「例外の種類を表すクラス名」がデータ型

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 25

catchの処理(内容)(p. 236)

例外の内容を出力することが多い

標準出力で出力することが多い

出力をすることで、プログラムの利用者が、なぜプログラムを実行できないかを
知ることができる

入力間違いを防ぐ目的で利用されることもある

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 26

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 27

catchの処理(内容)(例1)(p. 236)

String str;

try {

FileReader fr = new FileReader("sample.txt");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

}

catch (FileNotFoundException e) {

System.out.println("sample.txtというファイルは存在しないので、読み込めません。");
}

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 28

catchの処理(内容)(例2)(p. 236)

try {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

str = br.readLine();

int num = Integer.parseInt(str);

}

catch(NumberFormatException e) {

System.out.println("入力されたデータは数値ではないため、処理できません。");

}

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 29

catchの処理(内容)(例3)
try {

String str;

int num, code = 1;

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

System.out.println("数を1つ入力してください。");

str = br.readLine();

while (code == 1) {

try {

num = Integer.parseInt(str);

code = 0;

}

catch(NumberFormatException e) {

System.out.println("入力された文字列は数に変換できません。入力しなおしてください。");

str = br.readLine();

}
}

}

catch(IOException e) {

System.out.println("標準入力の処理ができませんでした。");
}

while文が終了した時には、必ず変数numに数が入っている

複数種類の例外に対する処理(p. 246)

1つのtryの中に複数種類の例外が発生することも

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 30

String str;

int num;

try {

FileReader fr = new FileReader("sample.txt");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

num = Integer.parseInt(str);

br.close();

}

FileNotFoundExceptionの可能性

IOExceptionの可能性

NumberFormatExceptionの可能性

6

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 31

例外処理の書き方(応用)(p. 246)

try {

}

catch (例外の種類を表すクラス名1 変数名) {

}

catch (例外の種類を表すクラス名2 変数名) {

}

例外が発生する可能性のある処理

1の例外が発生したときに行う処理

2の例外が発生したときに行う処理

catchはいくつ分
書いてもOK

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 32

例外処理の書き方(応用)(例)(p. 246)
String str;

int num;

try {

FileReader fr = new FileReader("sample.txt");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

num = Integer.parseInt(str);

br.close();

}

catch(FileNotFoundException e) {

System.out.println("このファイルは存在しません。");

}

catch(IOException e) {

System.out.println("このファイルからデータを読み込むことはできません。");

}

catch(NumberFormatException e) {

System.out.println("読み込んだデータを数値に変換することができません。");

}

catchを必要なだけ並べる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 33

上に書かれたcatchから順にチェックされ、該当したcatchで例外処理

if文と同様

複数のcatchに該当する例外であっても、先に書かれているところで例外処理
(その後のcatchはチェックしない)

catchを複数並べる場合(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 34

catchを複数並べる場合(2)

String str;

int num;

try {

FileReader fr = new FileReader("sample.txt");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

num = Integer.parseInt(str);

br.close();

}

catch(FileNotFoundException e) {

System.out.println("このファイルは存在しません。");

}

catch(IOException e) {

System.out.println("このファイルからデータを読み込むことはできません。");

}

"sample.txt"ファイルが存在しない
= FileNotFoundExceptionもIOExceptionも発生する可能性

FileNotFoundExceptionだけ発生
 IOExceptionは発生しない(2つ目のcatchは処理されない)

catchを複数並べる場合(3)

catchでの例外処理を書く順序は、原則何でもOK

Ex. StringIndexOutOfBoundsExceptionとNumberFormatException

StringIndexOutOfBoundsExceptionを先に書いてもOK

NumberFormatExceptionを先に書いてもOK

ただし、IOExceptionとFileNotFoundExceptionは別

IOExceptionはFileNotFoundExceptionを兼ねている

IOExceptionをFileNotFoundExceptionの前に書くと、FileNotFoundExceptionの
例外が発生することはない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 35

コンパイルエラー

FileNotFoundExceptionは、IOExceptionの前に書く必要

やってみよう!

教科書p. 254の例題01-06をやってみよう

追加

標準入力から1つ文字列を入力し、その文字列のインデックス3から10の
部分文字列を取り出すプログラム

どんな文字列が入力されても、部分文字列を取り出せるプログラムにすること
Ex. 「abc」のようにインデックスが10まで存在しない文字列が入力されれば、入力しなおしを求める

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 36

7

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 37

期末試験

7月31日(火) 2限 24102教室

解答時間: 80分

持ち込みすべて可の実技メインの試験

筆記も少しあり

期末試験

