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情報処理技法
(Javaプログラミング)1

第11回
エラーに対してどう対応する?

人間科学科コミュニケーション専攻

白銀純子
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第11回の内容
例外処理
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前回の復習問題の解答
下記のプログラムで、実行時にエラーが出る箇所と、その理由を
説明しなさい。
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int i, sum = 0;

int score[] = {55, 90, 79, 82, 88};

for (i = 1; i <= 5; i = i + 1) {

sum = sum + score[i];

}

配列の要素数は5つなので、添え字は0～4しか使えないが、
for文で添え字が1～5を使うようになっている。
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例外への対処

プログラムで発生するエラー(p. 230)

プログラムの実行時に発生する可能性のあるエラー

配列で、利用可能な範囲外の添え字を使おうとしたとき

String型の値をint型に変換できないとき

Ex. 入力された文字列をint型に変換したいときに、「abc」という文字列が入力される、
など

入力しようとしたファイルが存在しないとき

数を0で割ろうとしたとき

etc.
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プログラムを実行してみなければ、発生するかどうかわからないエラー
= コンパイル時には発見できないエラー

「例外」と呼ぶ

例外に対処するには?(p. 232)

 例外が発生すると...

 プログラムの実行がその時点で終了してしまう

 例外を発生させないためには...?

1. 例外が発生しないよう、プログラムを書いておく

 完全には難しい(入力データなどは実行時でないと判断不可)

2. 例外に対処するための処理をプログラムに書いておく

 例外が発生しても、それなりの処理を行う
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例外処理
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例外処理の書き方(基本形)(p. 232)

try {

}

catch (例外の種類を表すクラス名 変数名) {

}

例外が発生する可能性のある処理

例外が発生したときに行う処理

 tryを書いたら、必ずcatchも書かなければならない
 try文の中にcatchを書いてはならない
 tryの「}」の後、catchの前には何も書いてはならない

try～catch(p. 232)

try

例外が発生する可能性のある処理を、「try{～}」の間に書く

catch

tryの中の処理で例外が発生したときに、行われる処理を書く
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tryの処理(1)(p. 232)

例外が発生する可能性のある処理

標準入力の処理

ファイル入出力の処理

配列を扱う処理

文字列をint型に変換する処理

割り算の処理

etc.
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Javaの文法上の規則として、例外処理を書かなければならないもの
(書かなければコンパイルエラー)

文法上の規則としては、例外処理を書く必要はないが、必要に応じて
自分の判断で例外処理を書くもの

tryの処理(2)(p. 232)

例外が発生する可能性のあるポイント

tryで、例外が発生する可能性のあるポイントをきちんと囲む必要

このポイントを囲んでいなければ、例外処理の意味はなし

標準入力やファイル入出力では、このポイントを囲んでいなければ、コンパイルエラー
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例外処理の書き方(基本形)(p. 232)

try {

}

catch ( 例外の種類を表すクラス名 変数名) {

}

例外が発生する可能性のある処理

例外が発生したときに行う処理

例外にも様々な種類

catchの処理(例外の種類)(p. 233)

例外の種類を表すクラス名

例外には、様々な種類が存在

入出力に関係する例外(入出力ができなかった場合に例外が発生)

配列の添え字に関する例外(利用可能な範囲外の添え字を使おうとしたときに
例外が発生)

割り算に関する例外(数を0で割ろうとしたときに例外が発生)

tryで発生する可能性のある例外の種類を指定

適切な種類を指定しておかないと、例外処理ができない
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例外の種類(IOException)(1)(p. 238)

IOException

入出力に関する例外

標準入力・ファイル入力で、入力ができない場合

ファイル出力で、出力ができない場合
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 標準入力: プログラムをターミナルから起動していない場合などは、入力不可能
 ファイル入力: 読み込もうとしたファイルが、「読み込み」のアクセス権がない場合などは
入力不可能

 書き込もうとしたファイルが、「書き込み」のアクセス権がない場合などは出力不可能

例外の種類(IOException)(2)(p. 238)

IOException

分類されているパッケージ: java.io

「import  java.io.IOException」または「import  java.io.*;」がなければコンパイルエラー

例外が発生する可能性の あるポイントが、tryの中に書かれていなければ、
コンパイルエラー

ポイント: readLine()メソッド, ファイルを開く処理など
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例外の種類(IOException)(3)(p. 238)

String str;

BufferedReader br = new BufferedReader(new   InputStreamReader(System.in));

try {

str = br.readLine();

}

catch (IOException e) {
}

標準入力

String str;

try {

FileReader fr = new  FileReader("入力するファイルの名前");

BufferedReader br = new  BufferedReader(fr);

str = br.readLine();
br.close();

}

catch (IOException e) {

}

ファイル入力
例外が発生する可能性のあるポイント
(実際に入力をしているポイント)

発生する例外は入出力関係、と指定

例外の種類(ArithmeticException)(p. 240)

ArithmeticException

計算に関する例外

整数の割り算で、数を0で割ろうとした場合(小数の割り算でこの例外の発生はなし)

分類されているパッケージ: java.lang

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 16

int num1, num2, division;

String str1, str2;

str1 = br.readLine();

str2 = br.readLine();

num1 = Integer.parseInt(str1);

num2 = Integer.parseInt(str2);

try {

division = num1 / num2;

}

catch (ArithmeticException e) {

}

例外が発生する可能性のあるポイント
(割り算をしているポイント)

発生する例外は計算関係、と指定

例外の種類(StringIndexOutOfBoundsException)(p. 241)

StringIndexOutOfBoundsException

文字列における、文字の位置(インデックス)に関する例外

文字列において、実際には存在しない位置を指定した場合

分類されているパッケージ: java.lang
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String sub, original = "abcdef";

try {

sub = original.substring(3, 10);

}

catch(StringIndexOutOfBoundsException e) {

}

例外が発生する可能性のあるポイント
(文字列での、文字のインデックスを指定しているポイント)

発生する例外は文字列のインデックス関係、と指定

例外の種類(NumberFormatException)(p. 242)

NumberFormatException

文字列の数値変換に関する例外

数値に変換することができない文字列を、変換しようとした場合

分類されているパッケージ: java.lang
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String str;

int num;

BufferedReader br = new BufferedReader(new   InputStreamReader(System.in));

try {

str = br.readLine();

num = Integer.parseInt(str);

}

catch (NumberFormatException e) {

}

例外が発生する可能性のあるポイント
(文字列を数値に変換しようとしているポイント)

発生する例外は文字列の数値変換の関係、と指定
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例外の種類(ArrayIndexOutOfBoundsException)(p. 243)

ArrayIndexOutOfBoundsException

配列の添え字に関する例外

利用可能な範囲外の添え字を使おうとした場合

分類されているパッケージ: java.lang
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int[] num = {10, 20, 30, 40, 50};

int i, sum = 0;

try {

for (i = 0; i < 10; i++) {

sum = sum + num[i];

}

}

catch (ArrayIndexOutOfBoundsException e) {

}

例外が発生する可能性のあるポイント
(i番目の配列、と配列に添え字をあてはめて使っているポイント)

発生する例外は配列の添え字関係、と指定

例外の種類(IndexOutOfBoundsException)

IndexOutOfBoundsException

ArrayListのインデックスに関する例外

利用可能な範囲外のインデックスを使おうとした場合

分類されているパッケージ: java.lang
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ArayList<Integer> numList = new ArrayList<Integer>();

numList.add(1);

numList.add(2);

numList.add(3);

try {

int i, sum = 0;
for (i = 0; i <= 10; i = i + 1) {

sum = sum + numList.get(i);

}

catch(IndexOutOfBoundsException e) {

}

発生する例外はArrayListのインデックス関係、と指定

例外が発生する可能性のあるポイント
(i番目のインデックスの要素を取り出そうとしているポイント)

例外の種類(FileNotFoundException)(1)(p. 244)

FileNotFoundException

ファイルに関する例外

読み込もうとしたファイルが存在しない場合

分類されているパッケージ: java.io

「import  java.io.FileNotFoundException」または「import  java.io.*;」がなければ
コンパイルエラー

ただし、IOExceptionを使っていれば、FileNotFoundExceptionは不要

IOExceptionは、FileNotFoundExceptionも兼ねている

ファイルは存在しても読み書きできないのか、ファイルが存在自体しないのか、を
区別したいなどのときには両方利用する
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例外の種類(FileNotFoundException)(2)(p. 244)

String str;

try {

FileReader fr = new  FileReader("入力するファイルの名前");

BufferedReader br = new  BufferedReader(fr);

str = br.readLine();

br.close();

}

catch (FileNotFoundException e) {

}

発生する例外はファイル関係、と指定

例外が発生する可能性のあるポイント
(ファイルの読み込みを決めているポイント)

例外が発生すると...

例外が発生した以降の処理が実行されない
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String str;

int num1, num2, sum;

BufferedReader br = new BufferedReader(new   InputStreamReader(System.in));

try {

str = br.readLine();

num1 = Integer.parseInt(str);

str = br.readLine();

num2 = Integer.parseInt(str);

sum = num1 + num2;

}

catch (NumberFormatException e) {

}

Ex. ここで例外が発生する

この部分の処理が実行されない

実行されない部分の代わりになる処理をcatchに書く
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例外処理の書き方(基本形)(p. 232)

try {

}

catch (例外の種類を表すクラス名 変数名) {

}

例外が発生する可能性のある処理

例外が発生したときに行う処理

発生した例外についての
詳細な情報が格納される
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catchの処理(変数)(p. 236)

変数名

発生した例外についての詳細な情報が格納される

「例外の種類を表すクラス名」がデータ型

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2018, All rights reserved. 25

catchの処理(内容)(p. 236)

例外の内容を出力することが多い

標準出力で出力することが多い

出力をすることで、プログラムの利用者が、なぜプログラムを実行できないかを
知ることができる

入力間違いを防ぐ目的で利用されることもある
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catchの処理(内容)(例1)(p. 236)

String str;

try {

FileReader fr = new  FileReader("sample.txt");

BufferedReader br = new  BufferedReader(fr);

str = br.readLine();

br.close();

}

catch (FileNotFoundException e) {

System.out.println("sample.txtというファイルは存在しないので、読み込めません。");
}
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catchの処理(内容)(例2)(p. 236)

try {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

str = br.readLine();

int num = Integer.parseInt(str);

}

catch(NumberFormatException e) {

System.out.println("入力されたデータは数値ではないため、処理できません。");

}
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catchの処理(内容)(例3)
try {

String str;

int num, code = 1;

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

System.out.println("数を1つ入力してください。");

str = br.readLine();

while (code == 1) {

try {

num = Integer.parseInt(str);

code = 0;

}

catch(NumberFormatException e) {

System.out.println("入力された文字列は数に変換できません。入力しなおしてください。");

str = br.readLine();

}
}

}

catch(IOException e) {

System.out.println("標準入力の処理ができませんでした。");
}

while文が終了した時には、必ず変数numに数が入っている

複数種類の例外に対する処理(p. 246)

1つのtryの中に複数種類の例外が発生することも
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String str;

int num;

try {

FileReader fr = new  FileReader("sample.txt");

BufferedReader br = new  BufferedReader(fr);

str = br.readLine();

num = Integer.parseInt(str);

br.close();

}

FileNotFoundExceptionの可能性

IOExceptionの可能性

NumberFormatExceptionの可能性
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例外処理の書き方(応用)(p. 246)

try {

}

catch (例外の種類を表すクラス名1  変数名) {

}

catch (例外の種類を表すクラス名2  変数名) {

}

例外が発生する可能性のある処理

1の例外が発生したときに行う処理

2の例外が発生したときに行う処理

catchはいくつ分
書いてもOK
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例外処理の書き方(応用)(例)(p. 246)
String str;

int num;

try {

FileReader fr = new  FileReader("sample.txt");

BufferedReader br = new  BufferedReader(fr);

str = br.readLine();

num = Integer.parseInt(str);

br.close();

}

catch(FileNotFoundException e) {

System.out.println("このファイルは存在しません。");

}

catch(IOException e) {

System.out.println("このファイルからデータを読み込むことはできません。");

}

catch(NumberFormatException e) {

System.out.println("読み込んだデータを数値に変換することができません。");

}

catchを必要なだけ並べる
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上に書かれたcatchから順にチェックされ、該当したcatchで例外処理

if文と同様

複数のcatchに該当する例外であっても、先に書かれているところで例外処理
(その後のcatchはチェックしない)

catchを複数並べる場合(1)
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catchを複数並べる場合(2)

String str;

int num;

try {

FileReader fr = new  FileReader("sample.txt");

BufferedReader br = new  BufferedReader(fr);

str = br.readLine();

num = Integer.parseInt(str);

br.close();

}

catch(FileNotFoundException e) {

System.out.println("このファイルは存在しません。");

}

catch(IOException e) {

System.out.println("このファイルからデータを読み込むことはできません。");

}

"sample.txt"ファイルが存在しない
= FileNotFoundExceptionもIOExceptionも発生する可能性

FileNotFoundExceptionだけ発生
 IOExceptionは発生しない(2つ目のcatchは処理されない)

catchを複数並べる場合(3)

catchでの例外処理を書く順序は、原則何でもOK

Ex. StringIndexOutOfBoundsExceptionとNumberFormatException

StringIndexOutOfBoundsExceptionを先に書いてもOK

NumberFormatExceptionを先に書いてもOK

ただし、IOExceptionとFileNotFoundExceptionは別

IOExceptionはFileNotFoundExceptionを兼ねている

IOExceptionをFileNotFoundExceptionの前に書くと、FileNotFoundExceptionの
例外が発生することはない
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コンパイルエラー

FileNotFoundExceptionは、IOExceptionの前に書く必要

やってみよう!

教科書p. 254の例題01-06をやってみよう

追加

標準入力から1つ文字列を入力し、その文字列のインデックス3から10の
部分文字列を取り出すプログラム

どんな文字列が入力されても、部分文字列を取り出せるプログラムにすること
Ex. 「abc」のようにインデックスが10まで存在しない文字列が入力されれば、入力しなおしを求める
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期末試験

7月31日(火) 2限 24102教室

解答時間: 80分

持ち込みすべて可の実技メインの試験

筆記も少しあり

期末試験


