
1

コンピュータ・サイエンス2

第13回
プログラミング・アルゴリズム(実習)

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 1

第13回の内容
プログラミング・アルゴリズムの実習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 2

設問1[問題]
このフローチャートの処理の流れを文章で説明すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 3

箱からクッキーを1枚取り出す

開始

おなかがすいている

終了

はい

いいえ

取り出したクッキーを食べる

クッキーを1箱買う

設問1[解答]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 4

1. クッキーを1箱買う
2. おなかがすいているかどうかをチェックする

 「はい」であれば(すいていれば)3. に進む
 「いいえ」であれば(すいていなければ)終了する

3. 箱からクッキーを1枚取り出す
4. 取り出したクッキーを食べる
5. 2. の手順に戻る

前回の質問の回答

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 5

ソート
選択ソートとバブルソートの考え方(共通)

横一列に並べた数を左から順に2つずつ大きさを比較する

比較した結果、大きい数(小さい数)を右に送っていく

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 6

 数のグループの中で最も大きい数(小さい数)を探す
 最も大きい数(小さい数)を一番右に置くことで、数の位置を確定させる

2

選択ソート(p. 123)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 7

4 2 58

4 5 28

 最も小さい数tを4(一番左の数)とする
(暫定措置)

ステップ1:

 2番目の数(8)とtを比較する
 tの方が小さいのでそのまま

ステップ2:

 3番目の数(2)とtを比較する
 tの方が大きいのでtを2とする

ステップ3:

 4番目の数(5)とtを比べる
 tの方が小さいのでそのまま

ステップ4:

 tの数(2)と5(最後の数)を入れ替える
ステップ5:

 最も小さな数が一番後ろに来る
 次は、一番後ろの1つ前まで(8, 4, 5)で
同じようにする

4 2 58

前回の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 8

アルゴリズムのよしあし

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 13

良いアルゴリズム(p. 126)
そのアルゴリズムを使ったプログラムをコンピュータで実行するときの
処理時間や記憶領域の使用量

アルゴリズムのわかりやすさ・作りやすさ・修正の容易さ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 14

アルゴリズムの計算時間(p. 126)
アルゴリズムをコンピュータで実行したときの処理時間

CPUそのものの速さ

CPUとメインメモリとの間のアクセスの速さ

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 15

これらを除いても、同じ結果を出す複数のアルゴリズムで計算時間に違いが出る

アルゴリズムの計算量

※同じコンピュータで同じアルゴリズムの処理をしても、そのときどきで処理に必要な時間が異なる

アルゴリズムの計算量(p. 126)
CPUの速さなど、アルゴリズムには関係ない要因を除いた、
アルゴリズムそのものの計算時間

アルゴリズムそのものの計算(処理)の速さ

アルゴリズムでの計算の複雑さ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 16

3

アルゴリズムのわかりやすさ(p. 126)
一旦完成したプログラム: 機能の追加などのためにプログラムの修正が
必要なことも多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 17

アルゴリズムの修正

プログラムを読んで理解する = 書かれてあるアルゴリズムの理解が必要
 アルゴリズムが難解 ≒修正が難しい
 アルゴリズムが簡単 ≒修正が容易

人がプログラムを
読んで理解する

アルゴリズムを使う状況(p. 126)
多くの場合、計算量の少ない(処理時間の速い)アルゴリズムと
わかりやすいアルゴリズムは対立関係

計算量が少なければ、わかりにくいアルゴリズム

わかりやすければ、計算量が多いアルゴリズム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 18

速さをとるか、わかりやすさをとるかは、状況に応じて判断
 めったに使わないプログラムや頻繁に修正するプログラム: わかりやすいアルゴリズム
 よく使うプログラムや計算時間に制約があるプログラム: 速いアルゴリズム

ソートアルゴリズムの比較[1](p. 126)
結果が出るまでの基本処理の回数(アルゴリズムの計算量)

バブルソート: N(N-1)/2

併合ソート: N/2+(N-1)log2N

※log2N: Nを2kとしたときの「k」

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 19

Nが大きければ大きいほど、併合ソートの方が速い

N: 並べ替える数の個数

N N(N-1)/2(バブルソート) N/2+(N-1)log2N(併合ソート)

8 28 25

32 496 171

64 2016 410

128 8128 953

ソートアルゴリズムの比較[2](p. 126)
計算量: 入力(N: 並べ替えの場合は数の個数)に対して行われる
基本処理の回数

Nが十分に大きなとき: 計算式の中の最も大きな項だけに着目して、
大まかに計算
= 各項の比例定数や次数の低い項は無視

バブルソート: N(N-1)/2 = N2/2 – N/2

→N2のみに注目

併合ソート: N/2+(N-1)log2N = N/2 +Nlog2N – log2N

→Nlog2Nのみに注目

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 20

アルゴリズムの計算量は、正確な計算量ではなく、Nが大きくなればどの程度の割合で
計算量が増えるかを大まかに知ることが重要なため

注目する項を取り出して、O(...)と表記
 O(N2)やO(Nlog2N)など

ソートアルゴリズムの比較[3](p. 126)
計算時間の速いアルゴリズム: NやlogNなどのみで計算量が計算できる
アルゴリズム

計算時間の遅いアルゴリズム: N2, N3, ..., NkやN!(1からNまでを
かけあわせた数), 2Nなど、多くのかけ算を計算に必要とするアルゴリズム

N2, N3などの計算を必要とするアルゴリズム: 多項式時間アルゴリズム

N!や2Nなどの計算を必要とするアルゴリズム: 指数時間アルゴリズム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 21

Question!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 22

4

扱いにくい問題

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 23

扱いにくい問題(p. 127)
コンピュータでの処理が難しい問題も存在

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 24

n logn n nlogn n2 n3 2n n!

10 0.0000003 0.000001 0.000003 0.00001 0.0001 0.0001024 0.36

20 0.0000004 0.000002 0.000009 0.00004 0.0008 0.1048576 7700年

30 0.0000005 0.000003 0.000015 0.00009 0.0027 107 8×1018年

50 0.0000006 0.000005 0.000028 0.00025 0.012 3.4年

100 0.0000007 0.00001 0.000066 0.001 0.1 4×1015年

10000 0.0000013 0.001 0.0133 10 1.2日

1000000 0.0000023 1.0 23 116日 3200000年

※「日」や「年」の書いていない数の単位は「秒」

データの個数に対する処理時間
(1回の処理に0.0000001秒かかるコンピュータ)

扱いにくい問題[ナップザック](p. 127)
重さと値段のわかっているN個の荷物をナップザックに詰め込むとき、
合計金額を最大いくらにできるか

荷物の重さの合計はWを超えてはならない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 25

解答例: 荷物の全ての組み合わせを作って
重さの合計と金額の合計を計算

荷物がN個の場合、荷物の組み合わせは2N通り
= 重さの合計と金額の合計を2N回計算する必要

例えば...

荷物が60個、計算の基本処理1回分が1000万分の1秒の場合:

1/1000万×260 秒≒ 3000年

アルゴリズムを作ることはできるが、
計算時間が非現実的!

扱いにくい問題[セールス](p. 127)
セールスパーソンが、A0町(駅)からN個の町(駅)を回ってA0町(駅)に
帰るまでに最小のコスト(交通費)の経路を求める

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 26

解答例: A0から始まって、N個の町を回って帰ってくることができる全ての経路を考え、
それぞれの経路のコストの合計の中で最小のものを求める

町がN個の場合、経路の組み合わせは(N-1)!通り
= 調べなければならない経路が(N-1)!通り

例えば...

町が30個、計算の基本処理1回分が100万分の1秒の場合
(30 – 1)!×1/100万 = 8.8×1030回×1/100万≒ 3800年

アルゴリズムを作ることはできるが、
計算時間が非現実的!

扱いにくい問題への対応(p. 127)
入力が特殊な条件を満たす場合は、扱いやすくなることもある

最適解でなく、近似解で良ければ、扱いやすくなる

最適解: 最も良い答え

近似解: 最も良いわけではないかもしれないが、他の多くの答えよりは良い答え

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 27

プログラムでの基本処理の復習～実習に向けて～

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 28

5

プログラムでの基本処理(p. 119)
順次処理、条件分岐、反復処理が基本

順次処理:プログラム中に書いてある命令を、上から順に1つずつ処理すること

条件分岐:ある条件を満たしたときとそうでないときで、処理内容が変わること

反復処理:ある条件が満たされている限り、処理を繰り返すこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 29

記号 意味

フローチャート[1](p. 119)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 30

開始と終了

処理

条件判断

処理の流れ

開始

服を買う

靴を買う

終了

順次処理の例

フローチャート[2](p. 119)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 31

服を買う

開始

服の値段が
10000円以下

終了

はい

いいえ
晴れている

開始

終了

はい

いいえ

歩く バスに乗る

条件分岐の例1
(条件判断が「いいえ」の場合何もしない)

条件分岐の例2
(条件判断が「いいえ」の場合別のことをする)

フローチャート[3](p. 119)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 32

開始

終了

はい

いいえ

折りたたみ傘を
持っていく

長傘を持っていく

雨の確率が
10%未満

雨の確率が
50%未満

いいえ

はい

条件分岐の例3
(条件が複数あり、それぞれ違う処理をする)

フローチャート[4](p. 119)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 33

曲を1回練習する

開始

練習回数が
10回以下

終了

はい

いいえ

反復処理の例
(最初に条件を判断)

曲を1回練習する

開始

練習回数が
10回以下

終了

はい

いいえ

反復処理の例
(最初に処理をしてから条件を判断)

基本処理の実習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 34

6

順次処理・条件分岐・反復処理を理解しよう!
アルゴロジック(授業のページからアクセス可能)

http://home.jeita.or.jp/is/highschool/algo/index.html

順次処理・条件分岐・反復処理を理解するためのゲーム

「アルゴロジック」で順次処理と反復処理

「アルゴロジック2」で順次処理・条件分岐・反復処理の組み合わせ

マス上の人を、旗のマスまで移動させて旗をゲットするためのアルゴリズムを作成

旗のマスが複数ある場合は、全ての旗をゲットさせる必要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 35

アルゴロジック(使い方)[1]
アルゴロジックのページから「アルゴロジック」(または「アルゴロジック2」)の
「ゲームスタート」から開始

アルゴロジック: 「アルゴロジックJr.(初心者問題)」または「アルゴロジック(チャレンジ
問題)」

アルゴロジック2: 「START」

遊ぶコースを選択

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 36

アルゴロジック(使い方)[2]
「アルゴロジック2」をやってみよう!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 37

マス上の人を動かす
処理内容

 上から順に実行される

処理に使う部品
 マウスでドラッグして
左の枠に移動させる

処理内容を実行させるためのボタン
 処理が止まらなくなったら、もう一度押す

アルゴロジック(使い方)[3]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 38

部品 使い方

 人を数字の分だけマスを移動させる
 数字部分をクリックすることで、数字を変更する

 人を「▲」の方向に方向転換させる
 「○」内の上下左右をクリックすることで、方向を変更する
 方向は、人が現在向いている方向を基準にして設定する

 例えば人が現在下を向いていて、「▼」の方向を設定すると、人は上を向く

人の前が壁だった場合に、この部品から の部品までの処理をする

 「IF前に壁」の処理の後に置き、人の前が壁でなかった場合の処理を定義する
 までで、人の前が壁でなかった場合の処理を定義する

 この部品から の部品までの処理を繰り返す
 「∞」の部分をクリックすることで、繰り返す回数を変更する

※「IF前に壁」や「LOOP」は、対になる が配置されていなければエラー

アルゴロジック(使い方)[4]
処理の設定例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 39

(1)
(2)

(3)

(1) 「LOOP」の処理
 (2)と(3)の処理を繰り返す
 ただし、(2)と(3)はどちらか一方のみ処理される

 人の前に壁があるかないかでどちらが
処理されるかが決まる

(2) 「IF前に壁」の処理: 人の前に壁があった場合
1. 人を逆方向に回転させる
2. 人を2マス進める
3. 人を、人の右手方向に方向転換させる

(3) 「ELSE」の処理: 人の前に壁がなかった場合
 人を2マス進める

アルゴロジック(使い方)[5]
部品をドラッグして、部品と部品との間を空けることも可能

部品の順序を変更したいとき

配置する部品を追加したいとき

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 40

7

アルゴロジック(使い方)[6]
人が全ての旗をゲットできるアルゴリズムを作れば、そのコースはクリア

ただ単にクリアするアルゴリズムであれば、「one more challenge!」の表示

コース一覧の画面で、そのコースに「○」印がつく

最も良いアルゴリズムであれば、「That's great!」の表示

コース一覧の画面で、そのコースに「◎」印がつく

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 41

Question!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 42

プログラミング言語の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 43

変換方式
プログラミング言語で書かれた命令書: 機械語に変換しなければ、
コンピュータは実行不可能

変換方式は大きく分けて2種類

コンパイラ型: 翻訳

インタプリタ型: 通訳

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 44

コンパイラ[概要](p. 78)
コンパイラ: 命令書を機械語に翻訳し、コンピュータで実行可能に
するためのソフトウェア

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 45

Step 2. 手紙(英語)Step 2. 手紙(英語)

Step 1. 手紙(日本語)Step 1. 手紙(日本語)

Step 3. 手紙(英語)

外国人日本人

翻訳者

コンパイラ[概要](p. 78)
コンパイラ: 命令書を機械語に翻訳し、コンピュータで実行可能に
するためのソフトウェア

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 46

日本人

Step 3. 手紙(英語)

Step 1. 手紙(日本語)

Step 2. 手紙(英語)
外国人

翻訳者

人 コンピュータ

Step 3. 実行可能プログラム

Step 1. ソースコード

Step 2. 実行可能プログラム

命令書を全て
翻訳して相手に渡す

「コンパイル」する

コンパイラ

8

コンパイラ[詳しく](p. 78)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 47

コンパイラ

コンピュータ

人

実行可能プログラム

ソースコード
書く

実行可能プログラムを渡して実行させる

オブジェクトコード

オブジェクトコードオブジェクトコード
リンク

用語[1](p. 78)
ソースコード: プログラミング言語で記述した命令書

オブジェクトコード: ソースコードを翻訳したもの

実行可能プログラム: オブジェクトコードを連携させて、動作可能な形に
したもの

プログラム: ソースコードと実行可能プログラムの双方の意味

どちらの意味で使われるかは、その時々で異なる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 48

インタプリタ
インタプリタ: 命令書を最初から1行ずつ読んで機械語に通訳するための
ソフトウェア

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 49

Step 1. 手紙(日本語)Step 1. 手紙(日本語) Step 2. 手紙から一行ずつ(英語)

外国人日本人 通訳

インタプリタ
インタプリタ: 命令書を最初から1行ずつ読んで機械語に通訳するための
ソフトウェア

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 50

Step 2. 手紙から一行ずつ(英語)Step 1. 手紙(日本語)

外国人日本人

Step 2. ソースコードから一行ずつ(機械語)Step 1. ソースコード

コンピュータ人 通訳インタプリタ

命令書を一行ずつ
翻訳して伝える

プログラミング実習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 51

実習内容
プログラミング実習

命令書(プログラム)とはどのようなものか?

どうやって翻訳・通訳するか?

どうやって実行するか?

アルゴリズム実習

アルゴリズムによって、そんなに処理時間に違いがあるか?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 52

9

準備
授業のページから4つのファイルをダウンロード

BubbleSort.c

バブルソートをするC言語のプログラム

BubbleSort.html

バブルソートをするJavaScriptのプログラム

MergeSort.c

併合ソートをするC言語のプログラム

MergeSort.html

併合ソートをするJavaScriptのプログラム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 53

※リンクをクリックするのではなく、右クリック→「ファイルをダウンロード」でダウンロードすること

C言語とJavaScript
C言語

プログラミング言語の一種

記述された命令書を機械語に翻訳した命令書を作成する形式の言語
(コンパイラ型の言語)

JavaScript

プログラミング言語の一種

記述された命令書を機械語に通訳する形式の言語(インタプリタ型の言語)

Webページでよく利用

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 54

BubbleSort.c[前半1]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 55

#include<stdio.h>

#include<time.h>
int main() {

int i, j, temp, num = 30000;

int random[num];
for (i = 0; i < num; i++) {

random[i] = rand();

}
FILE *randFile = fopen("BubbleRandomNum.txt", "w");

for (i = 0; i < num; i++) {

fprintf(randFile, "%d¥n", random[i]);

}
fclose(randFile);

int start, end, procTime;
start = clock();

並べ替えをする
数の個数

BubbleSort.c[前半2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 56

#include<stdio.h>

#include<time.h>
int main() {

int i, j, temp, num = 30000;

int random[num];
for (i = 0; i < num; i++) {

random[i] = rand();

}
FILE *randFile = fopen("BubbleRandomNum.txt", "w");

for (i = 0; i < num; i++) {

fprintf(randFile, "%d¥n", random[i]);

}
fclose(randFile);

int start, end, procTime;
start = clock();

並べ替えをする数を
自動的に作成

BubbleSort.c[前半3]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 57

#include<stdio.h>

#include<time.h>
int main() {

int i, j, temp, num = 30000;

int random[num];
for (i = 0; i < num; i++) {

random[i] = rand();

}
FILE *randFile = fopen("BubbleRandomNum.txt", "w");

for (i = 0; i < num; i++) {

fprintf(randFile, "%d¥n", random[i]);

}
fclose(randFile);

int start, end, procTime;
start = clock();

自動的に作った数を
「BubbleRandomNum.txt」ファイルに書き出し

BubbleSort.c[後半1]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 58

for (i = 0; i < num; i++) {

for (j = 0; j < num - i - 1; j++) {
if (random[j] > random[j + 1]) {

temp = random[j + 1];

random[j + 1] = random[j];
random[j] = temp;

}

}
}

end = clock();

procTime = end - start;

printf("Time(Bubble Sort of %d Numbers): %lf second¥n", num,
(double) procTime / CLOCKS_PER_SEC);

FILE *bubbleFile = fopen("BubbleSortNum.txt", "w");
for (i = 0; i < num; i++) {

fprintf(bubbleFile, "%d¥n", random[i]);

}
fclose(bubbleFile);

}

バブルソートをする処理部分

10

BubbleSort.c[後半2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 59

for (i = 0; i < num; i++) {

for (j = 0; j < num - i - 1; j++) {
if (random[j] > random[j + 1]) {

temp = random[j + 1];

random[j + 1] = random[j];
random[j] = temp;

}

}
}

end = clock();

procTime = end - start;

printf("Time(Bubble Sort of %d Numbers): %lf second¥n", num,
(double) procTime / CLOCKS_PER_SEC);

FILE *bubbleFile = fopen("BubbleSortNum.txt", "w");
for (i = 0; i < num; i++) {

fprintf(bubbleFile, "%d¥n", random[i]);

}
fclose(bubbleFile);

}

数を並べ替えた結果を
「BubbleSortNum.txt」ファイルに書き出し

BubbleSort.html[前編1]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 60

<html>

<head>

<title>バブルソート</title>
<script language="JavaScript"><!--

NUM = 5000;
random = new Array();

for (i=0; i<=NUM; i++) {

random[i] = Math.floor(NUM * Math.random());
}

function bubbleSort() {

for (i = 0; i < NUM; i++) {

for (j = 0; j < NUM - i - 1; j++) {
if (random[j] > random[j + 1]) {

temp = random[j + 1];

random[j + 1] = random[j];
random[j] = temp;

}

}
}

}

並べ替えをする
数の個数

BubbleSort.html[前編2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 61

<html>

<head>

<title>バブルソート</title>
<script language="JavaScript"><!--

NUM = 5000;
random = new Array();

for (i=0; i<=NUM; i++) {

random[i] = Math.floor(NUM * Math.random());
}

function bubbleSort() {

for (i = 0; i < NUM; i++) {

for (j = 0; j < NUM - i - 1; j++) {
if (random[j] > random[j + 1]) {

temp = random[j + 1];

random[j + 1] = random[j];
random[j] = temp;

}

}
}

}

並べ替えをする数を
自動的に作成

BubbleSort.html[前編3]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 62

<html>

<head>

<title>バブルソート</title>
<script language="JavaScript"><!--

NUM = 5000;
random = new Array();

for (i=0; i<=NUM; i++) {

random[i] = Math.floor(NUM * Math.random());
}

function bubbleSort() {

for (i = 0; i < NUM; i++) {

for (j = 0; j < NUM - i - 1; j++) {
if (random[j] > random[j + 1]) {

temp = random[j + 1];

random[j + 1] = random[j];
random[j] = temp;

}

}
}

}

バブルソートをする処理部分

BubbleSort.html[中編]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 63

function writeNumber() {

for (i=0; i<NUM; i++) document.write(random[i]," ");
document.write("
");

}

// --></script>
</head>

<body>

<h1>バブルソート</h1>

<h2>並び替え前</h2>
<script langauge="JavaScript"><!--

writeNumber();

// --></script>

並べ替えた数をブラウザに
表示する部分

BubbleSort.html[後編]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 64

<h2>並び替え後</h2>

<script langauge="JavaScript"><!--
Start = new Date();

bubbleSort();

Stop = new Date();
startTime = Start.getTime();

stopTime = Stop.getTime();

resultTime = stopTime - startTime;
writeNumber();

document.write("
かかった時間: " + resultTime + "msec
");

// --></script>

</body>
</html>

11

MergeSort.c[前編1]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 65

#include<stdio.h>

int num = 30000;

void mergeSort(int random[], int start, int end) {

int middle, i, j, k;
int temp[num];

if (start >= end) {

return;
}

middle = (start + end) / 2;

mergeSort(random, start, middle);

mergeSort(random, middle + 1, end);

for (i = start; i <= middle; i++) {

temp[i] = random[i];
}

for (i = middle + 1, j = end; i <= end; i++, j--) {

temp[i] = random[j];
}

i = start;

j = end;

並べ替えをする
数の個数

MergeSort.c[前編2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 66

#include<stdio.h>

int num = 30000;

void mergeSort(int random[], int start, int end) {

int middle, i, j, k;
int temp[num];

if (start >= end) {

return;
}

middle = (start + end) / 2;

mergeSort(random, start, middle);

mergeSort(random, middle + 1, end);

for (i = start; i <= middle; i++) {

temp[i] = random[i];
}

for (i = middle + 1, j = end; i <= end; i++, j--) {

temp[i] = random[j];
}

i = start;

j = end;

併合ソートの処理
部分(前半)

MergeSort.c[中編1]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 67

for (k = start; k < end; k++) {

if (temp[i] <= temp[j]) {
random[k] = temp[i++];

} else {

random[k] = temp[j--];
}

}

}
int main() {

int i, j, temp;

int random[num];

for (i = 0; i < num; i++) {
random[i] = rand();

}

FILE *randFile = fopen("MergeRandomNum.txt", "w");

for (i = 0; i < num; i++) {

fprintf(randFile, "%d¥n", random[i]);
}

fclose(randFile);

併合ソートの処理
部分(後半)

MergeSort.c[中編2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 68

for (k = start; k < end; k++) {

if (temp[i] <= temp[j]) {
random[k] = temp[i++];

} else {

random[k] = temp[j--];
}

}

}
int main() {

int i, j, temp;

int random[num];

for (i = 0; i < num; i++) {
random[i] = rand();

}

FILE *randFile = fopen("MergeRandomNum.txt", "w");

for (i = 0; i < num; i++) {

fprintf(randFile, "%d¥n", random[i]);
}

fclose(randFile);

並べ替えをする数を
自動的に作成

MergeSort.c[中編3]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 69

for (k = start; k < end; k++) {

if (temp[i] <= temp[j]) {
random[k] = temp[i++];

} else {

random[k] = temp[j--];
}

}

}
int main() {

int i, j, temp;

int random[num];

for (i = 0; i < num; i++) {
random[i] = rand();

}

FILE *randFile = fopen("MergeRandomNum.txt", "w");

for (i = 0; i < num; i++) {

fprintf(randFile, "%d¥n", random[i]);
}

fclose(randFile);

自動的に作った数を
「MergeRandomNum.txt」ファイルに書き出し

MergeSort.c[後編]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 70

int start, end, procTime;

start = clock();
mergeSort(random, 0, num - 1);

end = clock();

procTime = end - start;

printf("Time(Merge Sort of %d Numbers): %f second¥n", num,

(double) procTime / CLOCKS_PER_SEC);
FILE *mergeFile = fopen("MergeSortNum.txt", "w");

for (i = 0; i < num; i++) {

fprintf(mergeFile, "%d¥n", random[i]);

}
fclose(mergeFile);

}

数を並べ替えた結果を
「MergeSortNum.txt」ファイルに書き出し

12

MergeSort.html[前編1]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 71

<html>

<head>

<title>併合ソート</title>
<script language="JavaScript"><!--

NUM = 5000;
random = new Array();

for (i = 0; i <= NUM; i++) {

random[i] = Math.floor(NUM * Math.random());
}

temp = new Array();

function mergeSort(start,end) {

if (start >= end) return;
var middle = Math.floor((start + end) / 2);

mergeSort(start, middle);

mergeSort(middle + 1, end);
var p = 0;

for (i = start; i <= middle; i++) temp[p++] = random[i];

var i = middle + 1;
var j = 0;

var k = start;

並べ替えをする
数の個数

MergeSort.html[前編2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 72

<html>

<head>

<title>併合ソート</title>
<script language="JavaScript"><!--

NUM = 5000;
random = new Array();

for (i = 0; i <= NUM; i++) {

random[i] = Math.floor(NUM * Math.random());
}

temp = new Array();

function mergeSort(start,end) {

if (start >= end) return;
var middle = Math.floor((start + end) / 2);

mergeSort(start, middle);

mergeSort(middle + 1, end);
var p = 0;

for (i = start; i <= middle; i++) temp[p++] = random[i];

var i = middle + 1;
var j = 0;

var k = start;

並べ替えをする数を
自動的に作成

MergeSort.html[前編3]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 73

<html>

<head>

<title>併合ソート</title>
<script language="JavaScript"><!--

NUM = 5000;
random = new Array();

for (i = 0; i <= NUM; i++) {

random[i] = Math.floor(NUM * Math.random());
}

temp = new Array();

function mergeSort(start,end) {

if (start >= end) return;
var middle = Math.floor((start + end) / 2);

mergeSort(start, middle);

mergeSort(middle + 1, end);
var p = 0;

for (i = start; i <= middle; i++) temp[p++] = random[i];

var i = middle + 1;
var j = 0;

var k = start;

併合ソートの処理
部分(前半)

MergeSort.html[中編1]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 74

while ((i <= end) && (j < p)) {

if (temp[j] <= random[i]) {
random[k++] = temp[j++];

} else {

random[k++] = random[i++];
}

}

while (j < p) {
random[k++] = temp[j++];

}

}

function writeNumber() {

for (i = 0; i < random.length; i++) {

document.write(random[i]," ");

}
document.write("
");

}

// --></script>
</head>

併合ソートの処理
部分(後半)

MergeSort.html[中編2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 75

while ((i <= end) && (j < p)) {

if (temp[j] <= random[i]) {
random[k++] = temp[j++];

} else {

random[k++] = random[i++];
}

}

while (j < p) {
random[k++] = temp[j++];

}

}

function writeNumber() {
for (i = 0; i < random.length; i++) {

document.write(random[i]," ");

}
document.write("
");

}

// --></script>
</head>

並べ替えた数をブラウザに
表示する部分

MergeSort.html[後編]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 76

<body>

<h1>併合ソート</h1>

<h2>並び替え前</h2>
<script langauge="JavaScript"><!--

writeNumber();
// --></script>

<h2>並び替え後</h2>
<script langauge="JavaScript"><!--

Start = new Date();

mergeSort(0,random.length-1);

Stop = new Date();
startTime = Start.getTime();

stopTime = Stop.getTime();

resultTime = stopTime - startTime;
writeNumber();

document.write("
かかった時間: " + resultTime + "msec
");

// --></script>
</body>

</html>

13

ファイルの役割

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 77

BubbleSort.c

「BubbleRandomNum.txt」に、並び替え前の数を保存

「BubbleSortNum.txt」に、並び替え後の数を保存

BubbleSort.html

並び替え前と後の数をブラウザに表示

MergeSort.c

「MergeRandomNum.txt」に、並び替え前の数を保存

「MergeSortNum.txt」に、並び替え後の数を保存

MergeSort.html

並び替え前と後の数をブラウザに表示

BubbleSort.c, MergeSort.c[1]
コンパイルして機械語のファイルを作成

1. Finder→「アプリケーション」→「ユーティリティ」→「ターミナル」をダブルクリック

2. それぞれのファイルをコンパイル

BubbleSort.cの場合:

gcc -o BubbleSort BubbleSort.c

と入力し、「Return」キーを押す

MergeSort.cの場合:

gcc -o MergeSort MergeSort.c

と入力し、「Return」キーを押す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 78

BubbleSort.c, MergeSort.c[2]
3. Finderで、「BubbleSort」ファイルと「MergeSort」ファイルができていることを
確認

BubbleSort: BubbleSort.cを機械語に翻訳したファイル

MergeSort: MergeSort.cを機械語に翻訳したファイル

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 79

BubbleSort.c, MergeSort.c[2]
プログラミング言語が機械語に翻訳されているかを確認

BubbleSort.cをJeditで開いてみる

BubbleSortをJeditで開いてみる

MergeSort.cをJeditで開いてみる

MergeSortをJeditで開いてみる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 80

 gcc: C言語のプログラムを機械語に翻訳するためのコンパイラ
 「gcc -o ファイル1 ファイル2」で、「ファイル2のプログラムを機械語に翻訳し、ファイルに
保存する」という命令

BubbleSort.c, MergeSort.c[3]
プログラムを実行

BubbleSort.cの場合: ターミナルで「./BubbleSort」と入力し、「Return」キーを
押す

MergeSort.cの場合: ターミナルで「./MergeSort」と入力し、「Return」キーを
押す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 81

※かかった時間の単位は秒

 BubbleRandomNum.txtとBubbleSortNum.txtを開き、数が並び替えされているか
どうかを確認

 MergeRandomNum.txtとMergeSortNum.txtを開き、数が並び替えされているか
どうかを確認

 「Time: かかった時間 second」とターミナル上に表示されるので、かかった時間を比較

BubbleSort.html, MergeSort.html
BubbleSort.htmlとMergeSort.htmlをWebブラウザで表示

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 82

 ブラウザで表示された数が、「並び替え前」と「並び替え後」で並び替えられているかどうかを確認
 「かかった時間msec」(ブラウザの一番下に表示)ので、BubbleSort.htmlとMergeSort.htmlで
かかった時間を比較

 BubbleSort.cとBubbleSort.htmlでかかった時間を比較
(※BubbleSort.cは数が30000個、BubbleSort.htmlは数が5000個)

 MergeSort.cとMergeSort.htmlでかかった時間を比較
(※MergeSort.cは数が30000個、MergeSort.htmlは数が5000個)

14

Question!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 83

期末試験
期末試験: 1月24日(火) 1限 24101教室

時間: 60分

持ち込み: すべて不可

内容: 後期の講義内容すべて

用語の意味の選択・説明

各種概念に関しての説明

回路図・真理値表

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 85

