
1

情報処理技法
(Javaプログラミング)2

第2回
前期の復習(2)

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 1

第2回の内容
情報処理技法(Javaプログラミング)1の復習(続き)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 2

前回の出席課題の解答
 Javaプログラムを実行させる仕組みを、下記のキーワードを使って
説明しなさい。

キーワード: ソースコード, Javaバイトコード, Javaコンパイラ, JVM

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 3

人間がソースコードを書き、それをJavaコンパイラに入力する。そうすると、Javaコンパイラは
ソースコードを翻訳したJavaバイトコードを作成する。人間がJavaバイトコードをJVMに
入力すると、JVMはプログラムを1行ずつ命令を機械語に通訳してコンピュータに伝え、
コンピュータがその命令を実行する。

解答例:

例外処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 4

プログラムで発生するエラー
 プログラムの実行時に発生する可能性のあるエラー

配列で、利用可能な範囲外の添え字を使おうとしたとき

 String型の値をint型に変換できないとき

 Ex. 入力された文字列をint型に変換したいときに、「abc」という文字列が入力される、など

入力しようとしたファイルが存在しないとき

数を0で割ろうとしたとき

 etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 5

プログラムを実行してみなければ、発生するかどうかわからないエラー
= コンパイル時には発見できないエラー

「例外」と呼ぶ

例外に対処するには?
 例外が発生すると...

 プログラムの実行がその時点で終了してしまう

 例外を発生させないためには...?

1. 例外が発生しないよう、プログラムを書いておく

 完全には難しい(入力データなどは実行時でないと判断不可)

2. 例外に対処するための処理をプログラムに書いておく
 例外が発生しても、それなりの処理を行う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 6

例外処理

2

例外処理の書き方(基本形)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 7

try {

}

catch (例外の種類を表すクラス名 変数名) {

}

例外が発生する可能性のある処理

例外が発生したときに行う処理

 tryを書いたら、必ずcatchも書かなければならない
 try文の中にcatchを書いてはならない
 tryの「}」の後、catchの前には何も書いてはならない

try～catch
 try

例外が発生する可能性のある処理を、「try{～}」の間に書く

 catch

 tryの中の処理で例外が発生したときに、行われる処理を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 8

tryの処理(1)
例外が発生する可能性のある処理

標準入力の処理

 ファイル入出力の処理

配列を扱う処理

文字列をint型に変換する処理

割り算の処理

 etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 9

Javaの文法上の規則として、例外処理を書かなければならないもの
(書かなければコンパイルエラー)

文法上の規則としては、例外処理を書く必要はないが、必要に応じて自分の
判断で例外処理を書くもの

tryの処理(2)
例外が発生する可能性のあるポイント

 tryで、例外が発生する可能性のあるポイントをきちんと囲む必要
このポイントを囲んでいなければ、例外処理の意味はなし

標準入力やファイル入出力では、このポイントを囲んでいなければ、コンパイルエラー

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 10

例外処理の書き方(基本形)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 11

try {

}

catch (例外の種類を表すクラス名 変数名) {

}

例外が発生する可能性のある処理

例外が発生したときに行う処理

例外にも様々な種類

catchの処理(例外の種類)
例外の種類を表すクラス名

例外には、様々な種類が存在
入出力に関係する例外(入出力ができなかった場合に例外が発生)

配列の添え字に関する例外(利用可能な範囲外の添え字を使おうとしたときに例外が
発生)

割り算に関する例外(数を0で割ろうとしたときに例外が発生)

 tryで発生する可能性のある例外の種類を指定

適切な種類を指定しておかないと、例外処理ができない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 12

3

例外の種類(IO)(1)
 IOException

入出力に関する例外
標準入力・ファイル入力で、入力ができない場合

ファイル出力で、出力ができない場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 13

標準入力: プログラムをターミナルから起動していない場合などは、入力不可能
ファイル入力: 読み込もうとしたファイルが、「読み込み」のアクセス権がない

場合などは入力不可能

書き込もうとしたファイルが、「書き込み」のアクセス権がない場合などは出力不可能

例外の種類(IO)(2)
 IOException

分類されているパッケージ: java.io

 「import java.io.IOException」または「import java.io.*;」がなければコンパイルエラー

例外が発生する可能性のあるポイントが、tryの中に書かれていなければ、
コンパイルエラー

ポイント: readLine()メソッド, ファイルを開く処理など

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 14

例外の種類(IO)(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 15

String str;

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

try {

str = br.readLine();

}

catch (IOException e) {
}

標準入力

String str;

try {

FileReader fr = new FileReader("入力するファイルの名前");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();
br.close();

}

catch (IOException e) {

}

ファイル入力 例外が発生する
可能性のあるポイント
(実際に入力をしている
ポイント)

発生する例外は入出力
関係、と指定

catchの処理(内容)(例2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 16

try {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

str = br.readLine();

int num = Integer.parseInt(str);

}

catch(NumberFormatException e) {

System.out.println("入力されたデータは数値ではないため、処理できません。");
}

複数種類の例外に対する処理
 1つのtryの中に複数種類の例外が発生することも

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 17

String str;

int num;

try {

FileReader fr = new FileReader("sample.txt");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

num = Integer.parseInt(str);

br.close();

}

FileNotFoundExceptionの
可能性

IOExceptionの可能性

NumberFormatExceptionの
可能性

例外処理の書き方(応用)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 18

try {

}

catch (例外の種類を表すクラス名1 変数名) {

}

catch (例外の種類を表すクラス名2 変数名) {

}

例外が発生する可能性のある処理

1の例外が発生したときに行う処理

2の例外が発生したときに行う処理

catchはいくつ分
書いてもOK

4

例外処理の書き方(応用)(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 19

String str;

int num;

try {

FileReader fr = new FileReader("sample.txt");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

num = Integer.parseInt(str);

br.close();

}

catch(FileNotFoundException e) {

System.out.println("このファイルは存在しません。");

}

catch(IOException e) {

System.out.println("このファイルからデータを読み込むことはできません。");

}
catch(NumberFormatException e) {

System.out.println("読み込んだデータを数値に変換することができません。");
}

catchを必要なだけ並べる

ファイル入力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 20

書式～入力～(全体像)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 21

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。");

}

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。
");

}

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。
");

}

書式～入力～(詳細2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 22

どのファイルの内容を入力するか、ファイルの名前を決める

 「入力するファイル名」は、単なる文字列でも、変数に代入された文字列でも良い
 入力するファイルは、Javaプログラムと同じ場所に置いておく

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。");

}

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。");

}

書式～入力～(詳細4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 23

「読むために」ファイルを開く作業(「fr」の部分は、
FileReaderの変数名を入れること)

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。");

}

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。");

}

書式～入力～(詳細5)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 24

開いたファイルを1行ずつ(文字列として)読んでいく(「br」の部分は、
BufferedReaderの変数名を入れること)

1つ目の「br.readLine()」で1行目を読む
2つ目の「br.readLine()」で2行目を読む
........

※ただし、2行目を読んだあとに1行目をもう一度 読んだり、
2行目をとばして3行目を読む、ということはできない

5

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。");

}

try {

String str;

FileReader fr = new FileReader(入力するファイル名);

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。");

}

書式～入力～(詳細6)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 25

ファイルを読み終わった後、ファイルを閉じる作業
(プログラムでは、開いたファイルは必ず閉じる作業をしなければならない)

(「br」の部分は、BufferedReaderの変数名、「fr」の部分は
FileReaderの変数名を入れること)

ファイル入力の例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 26

try {

String str;

FileReader fr = new FileReader("Sample.txt");

BufferedReader br = new BufferedReader(fr);

str = br.readLine();

System.out.println(str);

br.close();

fr.close();

}

catch (IOException e) {

System.out.println("指定されたファイルの入力ができません。");

}

プログラム:

情報処理技法
サンプルファイル

「Sample.txt」の中身:

情報処理技法
出力結果:

何行も書かれているファイル
 ファイルを最初から最後まで全部読むには?

 「br.readLine()」をファイルの行数分書く?

 ファイルの行数が多いときは?

 ファイルの行数が何行かわからないときは?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 27

「ファイルが読み込み可能」
という条件でwhile文を使う

ファイルの最後の行まで読み込んでしまうと、その次の行を
読み込もうとしたときに「読み込み不可能」という結果が返ってくる

「読み込み可能」という条件

 「br.ready()」で、ファイルの中にまだ読み込んでいない行が存在するかをチェック

読み込んでいない行が存在すれば、「true」という結果

読み込んでいない行が存在しなければ、「false」という結果

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 28

String str;

while (br.ready()) {

読み込んだ文字列に対する処理
}

ファイルの終わりに達していない限り、whileの中身を実行する

while文の中身は...
 while文の中身(読み込んだ1行1行の扱い)は、プログラムの目的に
応じて書く

 strの内容を配列に代入する
→ファイルの1行1行を配列として扱う

 strの内容を数値に変換する(そして配列に代入する)

 strの内容を細かく分解する(例えばスペースで区切って単語に分解する)

 etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 29

ファイル出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 30

6

書式～出力～(全体像)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 31

try {

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

try {

String str;

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

try {

String str;

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

書式～出力～(詳細2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 32

どのファイルに書き込むか、ファイルの名前を決める

 「出力するファイル名」は、単なる文字列でも、変数に代入された文字列でも良い
 出力するファイルは、Javaプログラムと同じ場所に作成される

try {

String str;

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

try {

String str;

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

書式～出力～(詳細4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 33

「書き込むために」ファイルを開く作業(「fw」の部分はFileWriterの変数名、
「bw」の部分はBufferedWriterの変数名を入れること)

try {

String str;

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

try {

String str;

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

書式～出力～(詳細5)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 34

開いたファイルに内容を書き込んでいく(「pw」の部分は、PrintWriterの変数名を入れること)

「pw.println(...)」では、書き込んだ後に改行が入る
「pw.print(...)」では、書き込んだ後に改行が入らない
→目的に応じて使い分けること

try {

String str;

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close():

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

try {

String str;

FileWriter fw = new FileWriter(出力するファイルの名前);

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(bw);

pw.println(書き込む内容);

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

書式～出力～(詳細6)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 35

ファイル書き込みが終わった後、ファイルを閉じる作業
(プログラムでは、開いたファイルは必ず閉じる作業をしなければならない)

(「pw」・「bw」・「fw」の部分は、それぞれPrintWriter・
BufferedWriter・FileWriterの変数名を入れること)

ファイル出力の例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 36

try {

String str;

FileWriter fw = new FileWriter("Sample.txt");

BufferedWriter bw = new BufferedWriter(fw);

PrintWriter pw = new PrintWriter(fw);

pw.println("情報処理技法");

pw.print("サンプルファイル");

pw.close();

bw.close();

fw.close();

}

catch (IOException e) {

System.out.println("指定されたファイルに出力ができません。");

}

プログラム:

情報処理技法
サンプルファイル

実行結果
「Sample.txt」の中身:

7

メソッドの作り方・使い方

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 37

メソッド
 プログラム中で行われる処理の手順をまとめたもの

複数の処理をまとめて、1つの名前を付けたもの

 メソッド名、引数、戻り値(返り値)という構成

 メソッド名: メソッドの名前

引数: メソッドに渡す情報(計算等の処理の材料にするデータ)

処理の材料にするデータのみ、引数として定義

戻り値(返り値): メソッドの内容を実行したときの処理結果

多くの場合、戻り値を変数に代入して利用する

 「変数名 = メソッド」で、変数に戻り値が代入される

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 38

メソッドのイメージ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 39

引数 引数
引数

戻り値

メソッドに対して与えるデータ

ごにょごにょ...

メソッド

メソッドの処理結果

メソッドを作る(1)
定義するのは の部分

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 40

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

メソッドを作るときのお約束
 ただし、いつも必ず「public static」であるとは限らない
 この授業では違う書き方をする場合も

ごにょごにょ...

メソッドを作る(2)
定義するのは の部分

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 41

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

戻り値は1つだけ

ごにょごにょ...

メソッドを作る(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 42

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

メソッドの名前(名前の付け方は、
クラス名や変数名と同じ)

Javaの命名規則としては...

 先頭の単語は動詞にする
 複数の単語を連結するときは、先頭の単語はすべて小文字、2つ目以降の単語は
先頭の文字のみ大文字、あとは小文字
 変数と同じ

8

メソッドを作る(4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 43

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

「引数のデータ型 引数の変数名」と書く
引数はいくつあっても良い(「,」で区切る)

データ型はそれぞれ異なってもかまわない

メソッドを作る(5)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 44

※「処理内容」の部分では、「引数」で定義した変数を
通常の変数として利用できる

public int sum(int num1, int num2) {

int result;

result = num1 + num2;

return result;

}

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

処理内容は何を書いても良い
(if, for, while, ...)

メソッドを作る(6)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 45

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

「処理結果」を返すという意味(「変数名= メソッド名(引数)」と書くと、
「変数名」の中に処理結果が代入される)

この文でメソッドの内容が終わる(この後には文を書かないこと)

処理結果のデータ型と戻り値のデータ型は同じもの

return文
戻り値のデータ型とreturn文で返すデータ型は同じでなくてはならない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 46

public int sum(int num1, int num2) {

int result;

result = num1 + num2;

return result;

}

public String sum(int num1, int num2) {

int result;

result = num1 + num2;

return result;

}

データ型が同じ

違うデータ型

メソッドの作成例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 47

public static double average(int num1, int num2, int num3) {

double result;

result = (double) (num1 + num2 + num3) / 3;

return result;

}

引数に与えられた3つの数の平均を求めるメソッド

処理結果を「double」型で返す

「return」で、「結果を返す」という意味
(「return」の後に書く処理結果のデータ型は、戻り値のデータ型と

同じにすること)

引数の定義

処理内容

メソッドを作る場所

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 48

public class ファイル名 {

public static void main(String[] args) {

}

}

mainの上か下に作る
(どちらに作っても良い)

9

メソッドの作成例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 49

public class Sample {

public static double average(int num1, int num2, int num3) {

double result;

result = (double) (num1 + num2 + num3) / 3;

return result;

}

public static void main(String[] args) {

}

}

作ったメソッドを使う
 メソッドを使う部分は、「public static void main」の中に書く

 「メソッド名(引数の値)」でメソッドを呼び出す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 50

作ったメソッドを使う(例)(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 51

public class Average {

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

}

メソッドの定義

作ったメソッドを使う(例)(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 52

public class Average {

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

}

引数には具体的な値または変数を書く
(引数の順番は、メソッドを作ったときの順番と同じに)

averageというメソッドを呼び出す

作ったメソッドを使う(例)(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 53

public class Average {

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

}

処理の流れ
1. mainメソッドで、averageメソッドの引数に10, 20, 30を指定する
2. 指定された10, 20, 30というデータがaverageメソッドの引数の変数「num1」、「num2」、

「num3」にそれぞれ代入される
3. averageメソッド内で引数の値を使って計算され、変数resultに結果が代入される
4. averageメソッドの変数resultの値がmainメソッドの変数resultに代入される

やってみよう!(1)
 24時間表記の時間を入力し、それを12時間表記の時間として出力する
プログラム

 24時間表記の時間は標準入力で入力すること

 24時間表記の時間を引数とし、12時間表記の時間を戻り値とするメソッドを
作ること

 Ex.

入力: 5 →出力: 5 am.

入力: 23 →出力: 11 pm.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 54

※必要と思われる例外処理をしておくこと

10

やってみよう!(2)
 これまでに作成したJavaファイルを読み込み、ファイルの行数を数える
プログラム

 Javaファイルの名前は、標準入力で入力すること

 ファイルの行数は、標準出力で出力すること

 0～1000までの乱数を100個作成し、その乱数をファイルに書き込む
プログラム

例えば、「random」というint型の変数がある場合、
random = (int) (Math.random() * 1000);

で、変数「random」に乱数が1つ入る

乱数は、「,」やスペースで区切ってファイルに書き込む

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 55

※必要と思われる例外処理をしておくこと

