
情報処理技法
(Javaプログラミング)1

第4回
語句や文章を扱いたいときは?

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 1

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 2

 文字列の扱い方

第4回の内容

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 3

 (ア)～(オ)を埋めなさい。

 プログラムでデータを扱う時には、データを「(ア)」と呼ばれる箱に入れて扱う。
「(ア)」には名前をつけ、あらかじめどのような種類の「(イ)」であるか、予告しておく。
この予告処理のことを「(ウ)」と呼ぶ。「(ア)」に具体的なデータを入れることを
「(エ)」と呼ぶ。そして、「(ア)」に入れられたデータを取り出して計算などに使うことを
「(オ)」と呼ぶ。

前回の復習問題の解答

解答:

(ア) 変数 (イ) データ型 (ウ) 宣言(する) (エ)代入(する) (オ)参照(する)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 4

文字列の扱い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 5

 文字を並べたもの

 言葉や文章:

コンピュータにとっては1文字1文字が並んでいるもの

文字列とは(p. 80)

例えば...blue

人間: 青い「色」と解釈
コンピュータ: 最初に「b」があり、その次に「l」があり、その次に「u」があり、最後に「e」という

文字の並びと解釈

人間の考え方も、コンピュータにあわせる

コンピュータは意味をわかっているわけではない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 6

 文字列はいろいろな情報を持っている

 文字の並び

 文字列の長さ(文字の数)

 文字列にはいろいろな操作ができる

 n番目の文字を取り出す

 m番目の文字からn番目の文字までで部分文字列を作る

 文字列中の部分文字列を、別の文字列に置き換える

 etc.

文字列の扱い(p. 80)

intやfloatなどの

数値とは扱い方が違う!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 7

 文字列のデータ型: String

 変数を宣言する方法は、intやfloatなどと同じ

 変数でない値を代入するときは、値を「"」で囲む

 変数を代入するときは、「"」は不要

データ型(p. 81)

String str1, str2;

最初の「S」は大文字、あとは小文字

str1 = "abc"; (「abc」は変数でない文字列)

str1 = str2; (「str2」はString型の変数)

※変数でない値は、日本語でもOK

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 8

 2つ以上の文字列をつなげるとき: 「+」記号でつなげる

文字列をつなげる(p. 85)

例1: str1の値が「abc」、 str2の値が「def」のとき、
str3に、str1とstr2をつなげた「abcdef」を代入したい

例2: str1に「Hello」、 str2に「World」が入っているとき、
str3に「Hello, World!」を代入したい

str3 = str1 + str2;

str3 = str1 + ", " + str2 + "!";
スペース

※1文字でも、文字列として扱うことができる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 9

 「"」で囲まれた言葉は、コンピュータにとってただの文字列

 「"」で囲まれていない言葉は、コンピュータにとっては変数

String型のデータ(p. 82)

String str:

str = "abc";

str = abc;

str = "abc" + def + "ghi";

ただの文字列なので問題なし

変数として扱われるので宣言をしていなければ
コンパイルエラー

ただの文字列なので問題なし
変数として扱われるので宣言をしていなければ
コンパイルエラー

「"」が必要なときと不要なときをきちんと使い分けよう!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 10

1. できあがりの文字列をイメージする

2. 変数・単なる文字列ごとに分解する

3. 変数や「"」つきの文字列に置き換える

4. 変数・単なる文字列の間に「+」をつける

文字列のつなげかた(p. 85)

金額は1000円です。

"金額は" payment "円です。"

"金額は" + payment + "円です。"

金額は 1000 円です。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 11

 プログラム中で扱うには、いくつか特殊な文字が存在

 Ex. 「Hello, "World"!」というデータを扱いたい場合

エスケープシーケンス(1)(p. 83)

String sentence;

sentence = " Hello, " World " !";

ここからがデータと
しての文字列

ここまでがデータと
しての文字列 ???

「"」の区別がつかない
変数でない文字列を囲むための「"」
データとしての「"」(「World」を強調するための「"」)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 12

 特殊な文字の区別

 プログラム中で何らかの処理の一部を表す文字

 普通に書く

 単なるデータとしての文字列の一部を表す文字

 特殊な表記で書く

エスケープシーケンス(2)(p. 83)

改行, ¥, Tab, ", '

エスケープシーケンス

エスケープシーケンス(3)(p. 83)
 改行: 「¥n」

 Tab: 「¥t」

 "(ダブルクォーテーション): 「¥"」

 ¥: 「¥¥」

 '(アポストロフィー): 「¥'」

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 13

例:

Hello, "World"!

Nice to meet you!

I'm fine!

改行

Tab

String str = "Hello, ¥" World¥" ! ¥nNice to meet you! ¥n¥t I ¥' m fine!"

"(ダブルクォーテーション)

'(アポストロフィー)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 14

 教科書p. 111の例題01-02をやってみよう

考えてみよう!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 15

 文字列を扱うために、Javaには様々なメソッドが用意されている

文字列に対する操作(p. 87)

メソッドの形:

String型の変数.メソッド名(引数, 引数, …)
引数の順番と数、データ型は、それぞれのメソッドで決まっている
(「,」でつなげて書く)

メソッドは、様々な処理をしてその結果を返してくれる
→返してくれた結果(戻り値)を、変数に代入して使う(例えば、

int num=String型の変数.メソッド(…);
のようにして使う)

※戻り値のデータ型はメソッドによって決まっている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 16

 プログラム中で行われる処理の手順をまとめたもの

 複数の処理をまとめて、1つの名前を付けたもの

 メソッド名、引数、戻り値(戻り値)から成る

 メソッド名: メソッドの名前

 引数: メソッドに渡す情報

 戻り値(戻り値): メソッドから返される処理結果

 多くの場合、戻り値を変数に代入して利用する

 「変数名 = メソッド」で、変数に戻り値が代入される

メソッド(p. 87)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 17

 プログラムでは、文字列の文字は0番目から数える

 文字の順番を表す番号を「インデックス」と呼ぶ

文字列の文字の数え方(p. 88)

例えば...abcdefghij

a: 0番目
b: 1番目
c： 2番目
.....

j: 9番目

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 18

 「length()」というメソッドを使う

文字列の長さ(文字数)(p. 88)

文字列型の変数.length();

int型で結果をもらう

例:

int strLength;

String str1="abc";

strLength: str1の文字数
str1の長さを求めたいときは?

strLength=str1.length();

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 20

 あるインデックス以降で、部分文字列が最初に出現する場所

 部分文字列: 文字列の一部

 「indexOf(str)」というメソッドを使う

部分文字列の最初の出現場所(p. 89)

文字列型の変数.indexOf(str);

int型で結果をもらう
「str」は探したい部分文字列 (String型)

例:

int index;

String str1="abcdefabcabcab";

str1での「abc」が最初に出てくる位置を求めたいときは?

(答え: 0)
index=str1.indexOf("abc");

※探したい文字列がなかったときは、結果が「-1」になる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 21

 あるインデックス以降で、部分文字列が最初に出現する場所

 「indexOf(str, n)」というメソッドを使う

部分文字列の出現場所(p. 91)

文字列型の変数.indexOf(str, n);

int型で結果をもらう
「str」は探したい部分文字列 (String型)

「n」は、調べ始めるインデックス
例:

int index;

String str1="abcdefabcabcab";

str1のインデックス1以降で、「abc」が最初に出てくる位置を求めたいときは?

(答え: 6) index=str1.indexOf("abc", 1);
※探したい文字列がなかったときは、結果が「-1」になる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 22

 あるインデックス以降で、部分文字列が最後に出現する場所

 「lastIndexOf(str)」というメソッドを使う

部分文字列の最後の出現場所(p. 93)

文字列型の変数.lastIndexOf(str);

int型で結果をもらう
「str」は探したい部分文字列(String型)

例:

int index;

String str1="abcdefabcabcab";

str1での「abc」が最後に出てくる位置を求めたいときは?

(答え: 9)
index=str1.lastIndexOf("abc");

※探したい文字列がなかったときは、結果が「-1」になる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 23

 あるインデックス以前で、部分文字列が最後に出現する場所

 「lastIndexOf(str, n)」というメソッドを使う

部分文字列の出現場所(p. 95)

文字列型の変数.lastIndexOf(str, n);

int型で結果をもらう
「str」は探したい部分文字列 (String型)

「n」は、調べ始めるインデックス
例:

int index;

String str1="abcdefabcabcab";

str1のインデックス8以前で、「abc」が最後に出てくる位置を求めたいときは?

(答え: 6) index=str1.lastIndexOf("abc", 8);
※探したい文字列がなかったときは、結果が「-1」になる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 24

 m番目の文字からn番目の文字までで部分文字列

 「substring(m, n+1)」というメソッドを使う

部分文字列(1-1)(p. 97)

文字列型の変数.substring(m, n+1)

「文字列型の変数」: 元の文字列
String型で結果をもらう

 m: 部分文字列の最初の文字の、元の文字列での位置(int型)

 n: 部分文字列の最後の文字の、元の文字列での位置(int型)

例: 「abcdefghi」から、「def」という部分文字列を作りたい

 部分文字列の最初の文字: d

 「d」の元の文字列での位置: 3

 部分文字列の最後の文字: f

 「f」の元の文字列での位置: 5

mは3, nは5と考える

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 25

 m番目の文字からn番目の文字までで部分文字列

 「substring(m, n+1)」というメソッドを使う

部分文字列(1-2)(p. 97)

「文字列方の変数.substring(m, n)」とすると...

 「m」番目の文字は、新しい文字列に入る
 「n」番目の文字は、新しい文字列には入らない

m番目からn番目の文字列を作るときには、substringに「m」と「n+1」を渡す

文字列型の変数.substring(m, n+1)

「文字列型の変数」: 元の文字列
String型で結果をもらう

 m: 部分文字列の最初の文字の、元の文字列での位置(int型)

 n: 部分文字列の最後の文字の、元の文字列での位置(int型)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 26

部分文字列(1-3)(p. 97)

例:

String fullString="abcdefghi";

String shortString;

shortString=fullString.substring(3, 6);

注意: 文字列は、0番目から数える

fullStringの3番目から5番目の部分文字列を求めたいときは?

(答え: def)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 27

 m番目から最後の文字列までで部分文字列

 「substring(m)」というメソッドを使う

部分文字列(2-1)(p. 99)

文字列型の変数.substring(m)

「文字列型の変数」: 元の文字列
String型で結果をもらう

m: 部分文字列の最初の文字の、元の文字列での位置(int型)

例: 「abcdefghi」から、「e」以降の部分文字列を作りたい

 部分文字列の最初の文字: e

 「e」の元の文字列での位置: 4

mは4と考える

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 28

部分文字列(2-2)(p. 99)

例:

String fullString="abcdefghi";

String shortString;

shortString=fullString.substring(4);

注意: 文字列は、0番目から数える

fullStringの4番目以降の部分文字列を求めたいときは?

(答え: efghi)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 29

 「equals(str)」というメソッドを使う

2つの文字列を比較(p. 104)

文字列型の変数.equals(str);

「str」は等しいか比べたい文字列(String型)

boolean型で結果をもらう

例:

String str1="abcdef";

String str2="abcijk";

str1とstr2は同じ文字列?

(答え: false)
str1.equals(str2);

※「str2」は変数でなくてもよい
つまり、「str1.equals("abcdef");」という書き方もOK

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 30

 「toLowerCase()」というメソッドを使う

半角アルファベットを小文字化

文字列型の変数.toLowerCase();

アルファベットが小文字になった結果をもらう
(もらう結果はString型)

例:

String upper="ABCDEF";

String lower;

upperを小文字にしたい
(答え: abcdef)

lower=upper.toLowerCase();

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 31

 「toUpperCase()」というメソッドを使う

半角アルファベットを大文字化

文字列型の変数.toUpperCase();

アルファベットが大文字になった結果をもらう
(もらう結果はString型)

例:

String lower="abcdefghi";

String upper;

lowerを小文字にしたい
(答え: ABCDEFGHI)

upper=lower.toLowerCase();

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 32

 indexOf, lastIndexOf, substringを組み合わせて使う

 ある文字で区切られた文字列を分解する場合など

よくある使い方

例えば...「,」で区切られた3つの言葉を1つ1つの言葉として取り出す場合
(「apple, pine, banana」を「apple」と「pine」と「banana」に分解)

int m, n;

String first, second, last, original = "apple,pine,banana";

m = original.indexOf(",");

n = original.lastIndexOf(",");

first = original.substring(0, m);

second = original.substring(m + 1, n);

last = original.substring(n + 1);

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 33

 教科書p. 111の例題03-06をやってみよう

やってみよう!

