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情報処理技法
(Javaプログラミング)1

第14回
ある1セットの命令をあちこちで利用するには?

人間科学科コミュニケーション専攻

白銀純子
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第14回の内容
メソッドの作り方・使い方
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前回の復習問題の解答
「例外」とは何かを説明しなさい。
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プログラム実行時に発生するエラーのこと。例外が発生することにより、
プログラムの実行がその時点で終了してしまう。

解答例:
メソッドの作り方・使い方
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同じ内容の処理って?(p. 290)
高校の生徒の英, 数, 国, 理, 社の平均点を計算するとき
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for (i = 0; i < 50; i++) {

englishTotal = englishTotal + english[i];

}

englishHeikin = englishTotal / 50;

for (i = 0; i < 50; i++) {

mathTotal = mathTotal + math[i];

}

mathHeikin = mathTotal / 50;

英語の平均

数学の平均

国語の平均, 理科の平均, 社会の平均...

変数の名前が違うだけ?(p. 290)
変数の名前が違うだけで、やっていることは同じ

英語の点数の合計を求めて平均する

数学の点数の合計を求めて平均する

......

変数の名前が違うから、for文やwhile文は使えない

でも、変数の名前を同じにはできない
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「メソッド」を使う
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メソッド(p. 291)
プログラム中で行われる処理の手順をまとめたもの

複数の処理をまとめて、1つの名前を付けたもの

メソッド名、引数、戻り値(返り値)という構成

メソッド名: メソッドの名前

引数: メソッドに渡す情報(計算等の処理の材料にするデータ)

処理の材料にするデータのみ、引数として定義

戻り値(返り値): メソッドの内容を実行したときの処理結果

多くの場合、戻り値を変数に代入して利用する

「変数名 = メソッド」で、変数に戻り値が代入される
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メソッドのイメージ(p. 291)
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引数 引数
引数

戻り値

メソッドに対して与えるデータ

ごにょごにょ...

メソッド

メソッドの処理結果

メソッド(例)(1)(p. 291)
Integer.parseInt(str)

メソッド名: Integer.parseInt

引数: str(String型)

戻り値: 「str」をint型に変換したデータ

戻り値をint型の変数に代入して利用する
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「num = Integer.parseInt(str)」で、変数「num」に、文字列をint型のデータに
変換したものが代入される

与えられた引数をint型に変換した結果

ごにょごにょ...

Integer.parseInt

String型のデータ

メソッド(例)(2)(p. 291)
str.substring(m, n)

メソッド名: substring

引数: m(int型) と n(int型)

戻り値: 「str」のm番目からn番めまでの文字で作った部分文字列

戻り値をString型の変数に代入して利用する
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「subStr = str.substring(m, n)」で、変数「subStr」に、strの部分文字列が代入される

fromとtoのインデックスから作られた部分文字列

ごにょごにょ...

substring
部分文字列のインデックス(from) 部分文字列のインデックス(to)

メソッドを作る(1)(p. 293)
今回定義するのは の部分
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public   static   戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return  処理結果;

}

メソッドを作るときのお約束

ごにょごにょ...

アクセス修飾子(p. 293)
Javaは、様々なクラスを連携させて動作するもの

アクセス修飾子: クラス同士を連携させたときに、他のクラスから利用できるか
否かを示すもの

public: 他のクラスから利用可能
←今回は、クラスは1つだけなのでpublicでOK

protected: 限られた範囲で、他のクラスから利用可能

private: 他のクラスからは利用不可
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static(1)(p. 293)
「static」がついているメソッド(クラスメソッド)

「クラス名.メソッド」の形式で呼び出し可能

staticつきのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドにもstaticが必要

mainメソッドから呼び出すときは、「static」がついている必要
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Ex. Integer.parseInt(...)

 Integer: Javaで用意されているクラスの1つ
 parseInt: Integerクラスで定義されているメソッド

static(2)(p. 293)
「static」がついていないメソッド(インスタンスメソッド)

必ず「オブジェクト名.メソッド」の形式で呼び出し

「クラス名.メソッド」の形式では呼び出し不可能
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Ex. BufferedReader br = new BufferedReader(...)

 BufferedReader: Javaで用意されているクラスの1つ
 br.readLine()という形でメソッドを利用

 readLine: BufferedReaderクラスで定義されているメソッド

static(3)(p. 293)
「static」をつけるかつけないかは、「オブジェクト指向」というプログラミングの
方法をきちんと勉強する必要

今回は、mainメソッドの中でメソッドを利用

mainメソッドは、クラスメソッドの一種
= staticつきのメソッド
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メソッドの宣言に「static」をつける必要

メソッドを作る(2)(p. 293)
今回定義するのは の部分
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public   static   戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return  処理結果;

}

戻り値は1つだけ

ごにょごにょ...

メソッドを作る(3)(p. 294
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public   static   戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return  処理結果;

}

メソッドの名前(名前の付け方は、
クラス名や変数名と同じ)

Javaの命名規則としては...

 先頭の単語は動詞にする
 複数の単語を連結するときは、先頭の単語はすべて小文字、2つ目以降の単語は
先頭の文字のみ大文字、あとは小文字
 変数と同じ

メソッドを作る(4)(p. 295)
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public   static   戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return  処理結果;

}

「引数のデータ型 引数の変数名」と書く
引数はいくつあっても良い(「,」で区切る)

データ型はそれぞれ異なってもかまわない
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引数の定義の注意
引数の定義は、一見変数宣言のよう

実際、メソッド内で使う変数の宣言とも言える
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but…
通常の変数宣言とは違う!

 必ず「データ型 変数名」のセットで書かなければならない

public  static  int sum(int num1, int num2, int num3) {

int result;

result = num1 + num2 + num3;

return  result;

}

public  static  int sum(int num1, num2, num3) {

int result;

result = num1 + num2 + num3;

return  result;

}

メソッドを作る(5)(p. 296)
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※「処理内容」の部分では、「引数」で定義した変数を通常の変数として利用できる

public  static  int sum(int num1, int num2) {

int result;

result = num1 + num2;

return  result;

}

public   static   戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return  処理結果;

}

処理内容は何を書いても良い
(if, for, while, ...)

メソッドを作る(6)(p. 296)
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public   static   戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return  処理結果;

}

「処理結果」を返すという意味(「変数名= メソッド名(引数)」と
書くと、「変数名」の中に処理結果が代入される)

この文でメソッドの内容が終わる(この後には文を書かないこと)

処理結果のデータ型と戻り値のデータ型は同じもの

return文(p. 296)
戻り値のデータ型とreturn文で返すデータ型は同じでなくてはならない
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public  static  int sum(int num1, int num2) {

int result;

result = num1 + num2;

return  result;

}

public  static  String  sum(int num1, int num2) {

int result;

result = num1 + num2;

return  result;

}

データ型が同じ

違うデータ型

メソッドの作成例(p. 297)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 23

public  static  double  average( int num1,  int num2, int num3 ) {

double  result;

result = (double) (num1 + num2 + num3) / 3;

return  result;

}

引数に与えられた3つの数の平均を求めるメソッド

処理結果を「double」型で返す

「return」で、「結果を返す」という意味
(「return」の後に書く処理結果のデータ型は、

戻り値のデータ型と同じにすること)

引数の定義

処理内容

メソッドを作る場所(p. 300)
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public class ファイル名 {

public static void main(String[] args) {

}

}

mainの上か下に作る
(どちらに作っても良い)
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メソッドの作成例(p. 300)
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public class Sample {

public  static  double  average(int num1,  int num2, int num3) {

double  result;

result = (double) (num1 + num2 + num3) / 3;

return  result;

}

public static void main(String[] args) {

}

}

作ったメソッドを使う(p. 301)
メソッドを使う部分は、「public static void main」の中に書く

「メソッド名(引数の値)」でメソッドを呼び出す
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作ったメソッドを使う(例)(1) (p. 301)
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public class Average {

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

}

メソッドの定義

作ったメソッドを使う(例)(2)(p. 301)
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public class Average {

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

}

引数には具体的な値または
変数を書く(引数の順番は、

メソッドを作ったときの順番と同じに)

averageというメソッドを呼び出す

作ったメソッドを使う(例)(3)(p. 301)
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public class Average {

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

}

処理の流れ
1. mainメソッドで、averageメソッドの引数に10, 20, 30を指定する
2. 指定された10, 20, 30というデータがaverageメソッドの引数の変数「num1」、「num2」、

「num3」にそれぞれ代入される
3. averageメソッド内で引数の値を使って計算され、変数resultに結果が代入される
4. averageメソッドの変数resultの値がmainメソッドの変数resultに代入される

メソッド～引数の扱い～
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引数が配列の場合(定義)(p. 302)
引数の定義の部分を「引数のデータ型[]  引数の変数名」または
「引数のデータ型 引数の変数名[]」のように書く
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public  static  int add(int[]  num) {

......

return  result;

}

public  static  int add(int num[]) {

......

return result;

}

または

引数が配列の場合(使用)(p. 302)
引数の定義の部分に配列変数をそのまま入れる
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public  class  Calculate {

public  static  int add(int[]  num) {

......

return  result;

}

public  static  void  main(String[] args) {

int[]  number = new int[100];

int sum;

sum = add(number);

}

}

添え字なども必要なく、
配列変数の名前のみ

引数がない場合(p. 302)
引数の定義の部分に何も書かず、メソッドの利用時の引数も
何も書かない
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public  class  Calculate {

public  static int add() {

......

return  result;

}

public  static  void  main(String[] args) {

int sum;

sum = add();

}

}

戻り値が配列の場合(p. 302)
戻り値の定義の部分を「戻り値のデータ型[]」のように書く
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public  class  Calculate {

public  static int[] add(int n) {

int[]  result = new int[100];

......

return  result;

}

public  static  void  main(String[] args) {

int[]  sum;

int num;

sum = add(num);

}

}

戻り値がない場合(p. 302)
戻り値の定義の部分を「void」と書く

メソッドの最後の「return」文も不要
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public  class  Calculate {

public static  void add(int n) {

......

}

public  static  void  main(String[] args) {

int num;

add(num);

}

}

メソッド～変数の有効領域～
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変数のスコープ(1)(p. 316)
変数は、どこで宣言したかによって使える場所が違う
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public class Sample {

public  static  int calculate(int num) {

}

public static void main(String[] args) {

}

}

ブロック

宣言したブロック内でしか使えない(変数のスコープ)

「{」に対応する「}」までの領域
(メソッドに限らず、if文やfor文の「{}」でも同じ)

public  class  Sample {

public  static  void main(String[]  args) {

int result;

String  str;

int num;

if (num > 0) {

int result;

String str;

}

}

}

ブロックB

ブロックA

変数のスコープ(2)(p. 316)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 38

広いブロックの変数は、そのブロックに含まれる狭いブロックでも使える

(1)

(2)

(1)の変数(ブロックAの変数)はブロックBでも使えるので、
(2)の変数宣言はコンパイルエラー

変数のスコープ(3)(p. 316)
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public  class  Sample {

public  static  int calculate(int num) {

int result;

String  str;

}

public  static  void main(String[]  args) {

}

}

変数は、宣言したブロック内でしか使えない

result, strは、「public static void main...」の中では使えない

変数のスコープ(4)(p. 316)
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public  class  Sample {

public  static  int calculate(int num) {

int result;

String  str;

}

public  static  void main(String[]  args) {

int result;

String  str;

}

}

変数は、宣言したブロック内でしか使えない

(1)

(2)

(1)の変数と(2)の変数は違う変数として扱われる


