
1

情報処理技法
(Javaプログラミング)1

第14回
ある1セットの命令をあちこちで利用するには?

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 1

第14回の内容
メソッドの作り方・使い方

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 2

前回の復習問題の解答
「例外」とは何かを説明しなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 3

プログラム実行時に発生するエラーのこと。例外が発生することにより、
プログラムの実行がその時点で終了してしまう。

解答例:
メソッドの作り方・使い方

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 4

同じ内容の処理って?(p. 290)
高校の生徒の英, 数, 国, 理, 社の平均点を計算するとき

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 5

for (i = 0; i < 50; i++) {

englishTotal = englishTotal + english[i];

}

englishHeikin = englishTotal / 50;

for (i = 0; i < 50; i++) {

mathTotal = mathTotal + math[i];

}

mathHeikin = mathTotal / 50;

英語の平均

数学の平均

国語の平均, 理科の平均, 社会の平均...

変数の名前が違うだけ?(p. 290)
変数の名前が違うだけで、やっていることは同じ

英語の点数の合計を求めて平均する

数学の点数の合計を求めて平均する

......

変数の名前が違うから、for文やwhile文は使えない

でも、変数の名前を同じにはできない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 6

「メソッド」を使う

2

メソッド(p. 291)
プログラム中で行われる処理の手順をまとめたもの

複数の処理をまとめて、1つの名前を付けたもの

メソッド名、引数、戻り値(返り値)という構成

メソッド名: メソッドの名前

引数: メソッドに渡す情報(計算等の処理の材料にするデータ)

処理の材料にするデータのみ、引数として定義

戻り値(返り値): メソッドの内容を実行したときの処理結果

多くの場合、戻り値を変数に代入して利用する

「変数名 = メソッド」で、変数に戻り値が代入される

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 7

メソッドのイメージ(p. 291)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 8

引数 引数
引数

戻り値

メソッドに対して与えるデータ

ごにょごにょ...

メソッド

メソッドの処理結果

メソッド(例)(1)(p. 291)
Integer.parseInt(str)

メソッド名: Integer.parseInt

引数: str(String型)

戻り値: 「str」をint型に変換したデータ

戻り値をint型の変数に代入して利用する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 9

「num = Integer.parseInt(str)」で、変数「num」に、文字列をint型のデータに
変換したものが代入される

与えられた引数をint型に変換した結果

ごにょごにょ...

Integer.parseInt

String型のデータ

メソッド(例)(2)(p. 291)
str.substring(m, n)

メソッド名: substring

引数: m(int型) と n(int型)

戻り値: 「str」のm番目からn番めまでの文字で作った部分文字列

戻り値をString型の変数に代入して利用する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 10

「subStr = str.substring(m, n)」で、変数「subStr」に、strの部分文字列が代入される

fromとtoのインデックスから作られた部分文字列

ごにょごにょ...

substring
部分文字列のインデックス(from) 部分文字列のインデックス(to)

メソッドを作る(1)(p. 293)
今回定義するのは の部分

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 11

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

メソッドを作るときのお約束

ごにょごにょ...

アクセス修飾子(p. 293)
Javaは、様々なクラスを連携させて動作するもの

アクセス修飾子: クラス同士を連携させたときに、他のクラスから利用できるか
否かを示すもの

public: 他のクラスから利用可能
←今回は、クラスは1つだけなのでpublicでOK

protected: 限られた範囲で、他のクラスから利用可能

private: 他のクラスからは利用不可

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 12

3

static(1)(p. 293)
「static」がついているメソッド(クラスメソッド)

「クラス名.メソッド」の形式で呼び出し可能

staticつきのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドにもstaticが必要

mainメソッドから呼び出すときは、「static」がついている必要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 13

Ex. Integer.parseInt(...)

 Integer: Javaで用意されているクラスの1つ
 parseInt: Integerクラスで定義されているメソッド

static(2)(p. 293)
「static」がついていないメソッド(インスタンスメソッド)

必ず「オブジェクト名.メソッド」の形式で呼び出し

「クラス名.メソッド」の形式では呼び出し不可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 14

Ex. BufferedReader br = new BufferedReader(...)

 BufferedReader: Javaで用意されているクラスの1つ
 br.readLine()という形でメソッドを利用

 readLine: BufferedReaderクラスで定義されているメソッド

static(3)(p. 293)
「static」をつけるかつけないかは、「オブジェクト指向」というプログラミングの
方法をきちんと勉強する必要

今回は、mainメソッドの中でメソッドを利用

mainメソッドは、クラスメソッドの一種
= staticつきのメソッド

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 15

メソッドの宣言に「static」をつける必要

メソッドを作る(2)(p. 293)
今回定義するのは の部分

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 16

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

戻り値は1つだけ

ごにょごにょ...

メソッドを作る(3)(p. 294

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 17

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

メソッドの名前(名前の付け方は、
クラス名や変数名と同じ)

Javaの命名規則としては...

 先頭の単語は動詞にする
 複数の単語を連結するときは、先頭の単語はすべて小文字、2つ目以降の単語は
先頭の文字のみ大文字、あとは小文字
 変数と同じ

メソッドを作る(4)(p. 295)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 18

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

「引数のデータ型 引数の変数名」と書く
引数はいくつあっても良い(「,」で区切る)

データ型はそれぞれ異なってもかまわない

4

引数の定義の注意
引数の定義は、一見変数宣言のよう

実際、メソッド内で使う変数の宣言とも言える

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 19

but…
通常の変数宣言とは違う!

 必ず「データ型 変数名」のセットで書かなければならない

public static int sum(int num1, int num2, int num3) {

int result;

result = num1 + num2 + num3;

return result;

}

public static int sum(int num1, num2, num3) {

int result;

result = num1 + num2 + num3;

return result;

}

メソッドを作る(5)(p. 296)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 20

※「処理内容」の部分では、「引数」で定義した変数を通常の変数として利用できる

public static int sum(int num1, int num2) {

int result;

result = num1 + num2;

return result;

}

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

処理内容は何を書いても良い
(if, for, while, ...)

メソッドを作る(6)(p. 296)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 21

public static 戻り値のデータ型 メソッド名(引数) {

メソッドでの処理内容
return 処理結果;

}

「処理結果」を返すという意味(「変数名= メソッド名(引数)」と
書くと、「変数名」の中に処理結果が代入される)

この文でメソッドの内容が終わる(この後には文を書かないこと)

処理結果のデータ型と戻り値のデータ型は同じもの

return文(p. 296)
戻り値のデータ型とreturn文で返すデータ型は同じでなくてはならない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 22

public static int sum(int num1, int num2) {

int result;

result = num1 + num2;

return result;

}

public static String sum(int num1, int num2) {

int result;

result = num1 + num2;

return result;

}

データ型が同じ

違うデータ型

メソッドの作成例(p. 297)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 23

public static double average(int num1, int num2, int num3) {

double result;

result = (double) (num1 + num2 + num3) / 3;

return result;

}

引数に与えられた3つの数の平均を求めるメソッド

処理結果を「double」型で返す

「return」で、「結果を返す」という意味
(「return」の後に書く処理結果のデータ型は、

戻り値のデータ型と同じにすること)

引数の定義

処理内容

メソッドを作る場所(p. 300)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 24

public class ファイル名 {

public static void main(String[] args) {

}

}

mainの上か下に作る
(どちらに作っても良い)

5

メソッドの作成例(p. 300)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 25

public class Sample {

public static double average(int num1, int num2, int num3) {

double result;

result = (double) (num1 + num2 + num3) / 3;

return result;

}

public static void main(String[] args) {

}

}

作ったメソッドを使う(p. 301)
メソッドを使う部分は、「public static void main」の中に書く

「メソッド名(引数の値)」でメソッドを呼び出す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 26

作ったメソッドを使う(例)(1) (p. 301)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 27

public class Average {

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

}

メソッドの定義

作ったメソッドを使う(例)(2)(p. 301)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 28

public class Average {

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

}

引数には具体的な値または
変数を書く(引数の順番は、

メソッドを作ったときの順番と同じに)

averageというメソッドを呼び出す

作ったメソッドを使う(例)(3)(p. 301)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 29

public class Average {

public static void main(String[] args) {

double result;

result = average(10, 20, 30);

}

public static double average (int num1, int num2, int num3) {

int sum;

double result;

sum = num1 + num2 + num3;

result = (double) sum / 3;

return result;

}

}

処理の流れ
1. mainメソッドで、averageメソッドの引数に10, 20, 30を指定する
2. 指定された10, 20, 30というデータがaverageメソッドの引数の変数「num1」、「num2」、

「num3」にそれぞれ代入される
3. averageメソッド内で引数の値を使って計算され、変数resultに結果が代入される
4. averageメソッドの変数resultの値がmainメソッドの変数resultに代入される

メソッド～引数の扱い～

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 30

6

引数が配列の場合(定義)(p. 302)
引数の定義の部分を「引数のデータ型[] 引数の変数名」または
「引数のデータ型 引数の変数名[]」のように書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 31

public static int add(int[] num) {

......

return result;

}

public static int add(int num[]) {

......

return result;

}

または

引数が配列の場合(使用)(p. 302)
引数の定義の部分に配列変数をそのまま入れる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 32

public class Calculate {

public static int add(int[] num) {

......

return result;

}

public static void main(String[] args) {

int[] number = new int[100];

int sum;

sum = add(number);

}

}

添え字なども必要なく、
配列変数の名前のみ

引数がない場合(p. 302)
引数の定義の部分に何も書かず、メソッドの利用時の引数も
何も書かない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 33

public class Calculate {

public static int add() {

......

return result;

}

public static void main(String[] args) {

int sum;

sum = add();

}

}

戻り値が配列の場合(p. 302)
戻り値の定義の部分を「戻り値のデータ型[]」のように書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 34

public class Calculate {

public static int[] add(int n) {

int[] result = new int[100];

......

return result;

}

public static void main(String[] args) {

int[] sum;

int num;

sum = add(num);

}

}

戻り値がない場合(p. 302)
戻り値の定義の部分を「void」と書く

メソッドの最後の「return」文も不要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 35

public class Calculate {

public static void add(int n) {

......

}

public static void main(String[] args) {

int num;

add(num);

}

}

メソッド～変数の有効領域～

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 36

7

変数のスコープ(1)(p. 316)
変数は、どこで宣言したかによって使える場所が違う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 37

public class Sample {

public static int calculate(int num) {

}

public static void main(String[] args) {

}

}

ブロック

宣言したブロック内でしか使えない(変数のスコープ)

「{」に対応する「}」までの領域
(メソッドに限らず、if文やfor文の「{}」でも同じ)

public class Sample {

public static void main(String[] args) {

int result;

String str;

int num;

if (num > 0) {

int result;

String str;

}

}

}

ブロックB

ブロックA

変数のスコープ(2)(p. 316)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 38

広いブロックの変数は、そのブロックに含まれる狭いブロックでも使える

(1)

(2)

(1)の変数(ブロックAの変数)はブロックBでも使えるので、
(2)の変数宣言はコンパイルエラー

変数のスコープ(3)(p. 316)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 39

public class Sample {

public static int calculate(int num) {

int result;

String str;

}

public static void main(String[] args) {

}

}

変数は、宣言したブロック内でしか使えない

result, strは、「public static void main...」の中では使えない

変数のスコープ(4)(p. 316)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2016, All rights reserved. 40

public class Sample {

public static int calculate(int num) {

int result;

String str;

}

public static void main(String[] args) {

int result;

String str;

}

}

変数は、宣言したブロック内でしか使えない

(1)

(2)

(1)の変数と(2)の変数は違う変数として扱われる

