
1

コンピュータ・サイエンス2

第5回
オペレーティングシステム(続き)

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

第5回の内容
オペレーティングシステム(続き)

クラウドコンピューティング

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

前回の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3

ソフトウェアの種類(p. 64)
オペレーティングシステム(OS)

ハードウェアを動かすための基本的なソフトウエア

ハードウェアと応用ソフトウェアの間のやり取りを仲介

ハードウェアの制御

アプリケーション(アプリケーションソフト、とも)

OSをもとに動くソフトウェア

人間が直接操作するソフトウェア

文書処理ソフト

表計算ソフト

Webブラウザ

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

オペレーティングシステム(p. 64)
Operating System(OS)

「基本ソフトウェア」とも呼ばれる

コンピュータに必須の基本的なソフトウェア

役割: ハードウェア資源(CPUや記憶装置など)とソフトウェア資源(プログラムや
データ)を効率的に管理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

※プログラム: コンピュータに指示をするための命令の集まり

OSの発展[1](p. 65)
道具や機械で計算をさせるという考えは古くから存在

紀元前: 算盤

1640年代: 歯車式計算機

フランスのパスカル(Blaise Pascal)が考案

1945年: ENIAC(Electronic Numerical Integrator and Computer)

ペンシルベニア大学で開発

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

 「OS」と呼べるほどのきちんとした形のソフトウェアはなかった
 人間が線をつなぐことにより、計算していた

 計算速度は人間よりも高速
 異なる手順で計算をする場合には、配線をし直す必要

2

OSの発展[2](p. 65)
ノイマン(John von Neuman)がプログラム内蔵方式を提唱

ハンガリー出身のアメリカの数学者

1949年: EDSAC(Electronic Delay Strage Automatic Calculator)

Maulice Wilkesらが開発

実際に動くことはなかったが、プログラム可能なコンピュータの原型

初期(この頃)のコンピュータでは、実行できるプログラムは1つだけ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

OSの発展～OSでの処理～[1](p. 66)
時代が進むと...

1台のコンピュータに様々な入力・出力装置(入出力制御)

複数のプログラム(ジョブ)を連続して処理(ジョブ管理)

ジョブ: 人間がコンピュータに命令する処理の単位

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

 どこから入力が来た?

 どこに出力する?

プログラムA(ジョブA)

プログラムB(ジョブB)

プログラムC(ジョブC)

 いくつのジョブを処理する?

 どのジョブから処理する?

OSの発展～OSでの処理～[2](p. 67)
プログラム(コンピュータへの命令書)を記述できる言語

初期: 機械語(2進数だけの表現)で記述

機械語は不便: アセンブリ言語が登場

アセンブリ言語でプログラムを書き、機械語に翻訳(アセンブラ)

その後: FORTRAN(FORmula TRANSlator)が登場

英語に近い形で記述し、機械語に翻訳(コンパイラ)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

LD L K

S L M

STO L I

アセンブリ言語

機械語への
翻訳処理

アセンブラ

1101011101111111

0001011011100000

0101010010101101

機械語

コンパイラの処理

I = K - M

FORTRAN

1101011101111111

0001011011100000

0101010010101101

機械語

LD L K

S L M

STO L I

アセンブリ言語

OSの発展～OSでの処理～[3](p. 67)
当時のコンピュータ: メインメモリの容量が少

メインメモリ: プログラム実行時に、プログラム内の命令や利用するデータを
一時的に保存

容量が少ないと、命令の多いプログラムやサイズの大きいデータを保存しきれない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

メインメモリが足りなくなったら、補助記憶装置(HDD)にメインメモリの役割をさせる
(仮想記憶装置(Virtual Storage))

メインメモリと補助記憶装置(仮想記憶装置)とのやりとりを管理するプログラムも必要

OSの発展～OSでの処理～[4](p. 68)
様々な処理をコンピュータで行う必要

CPUに、効率よく、各ジョブを実行させる必要
(タイムシェアリングシステム (Time Sharing System, TSS))

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

ジョブA(分割) ジョブC(分割)ジョブB(分割)

CPU

実行
実行

実行

 空いている時間はいつ?

 その時間でどれを実行する?

多重プログラミング(同時に複数の処理を並行して行うこと)が可能に
 CPUが一度に行う処理は1つだが、CPUの処理時間を細かく分割し、
複数の処理を同時に行っているように見せかける方法

CPUの割り当て制御プログラムが必要

OSの発展～OSでの処理～[5](p. 68)
1台のコンピュータを遠隔地から使う必要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

リモートアクセスのプログラムが必要

3

OSの発展～OSでの処理～[6](p. 68)
DOS/VS(Disk Operating System/Virtual Strage)にこれまでの
必要なプログラムがすべて搭載

コンピュータがメインフレームと呼ばれていた頃に搭載されていたOS

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

 コンピュータを制御するための各種プログラムが開発
 さまざまなプログラムや処理方式を統合し、1つにまとめて提供
するという方向性

OS(Operating System)として登場

OSの発展～その後～[1](p. 69)
1台のコンピュータを数台分のコンピュータとして利用する考え方が登場

(仮想化)

タイムシェアリングシステムの発展

CPUやメインメモリなどを仮想化

コンピュータとコンピュータをつないで利用する考え方が登場
(コンピュータネットワーク)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

マルチプロセッシングシステムや複数のOSを管理するシステムが必要
 マルチプロセッシングシステム: 複数個のCPUなどを制御するためのシステム

OSの発展～その後～[2](p. 69)
離れたところにあるコンピュータ同士を専用回線でつなげて使う必要

コンピュータとコンピュータをつないで利用する考え方が登場
(コンピュータネットワーク)

1台に処理がかたより、処理速度が遅くなってしまうため

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

通信制御装置を管理するプログラムが必要

分散処理システムが開発

プログラム・データ群

どのコンピュータがどの部分を
処理する?

現在(p. 70)
メインフレームの時代のOSの機能は、現在でも利用

クラウドコンピューティングの登場(「クラウド」とも)

ソフトウェアのオープンソース化や無償化

オープンソース: 機械語に翻訳前のプログラムを公開して誰でも編集可能にしたもの

企業や組織などで利用するソフトウェア・ハードウェアの維持管理コストの
軽減のニーズ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

クラウドコンピューティング[1](p. 70)
これまで: 利用者がアクセスするコンピュータは1台

データ管理, メールの処理, etc.

どこにあるどのコンピュータか、特定可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

利用者

Ex. 東京女子大学でのホームのデータ利用
 データはファイルサーバに保存されているので、ネットワークを通じてどのコンピュータからも利用可能

データ管理コンピュータ
(ファイルサーバ)

東京女子大学キャンパス

がんばって探せば、ファイルサーバを
見つけることも可能

クラウドコンピューティング[2](p. 70)
クラウド: たくさんのコンピュータのどれかとやりとり

たくさんのコンピュータを1つのコンピュータとして見せかけ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

利用者

コンピュータ群

4

クラウドコンピューティング[3](p. 70)
クラウドコンピューティングでは...

アクセスするコンピュータは、地理的に一か所に固まって
置かれておらず、世界中の各地に置かれていることも

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

利用者側からすると...

自分が通信しているサーバが、日本にあるかアメリカにあるかもわからない

 アクセスするコンピュータの実体がどこにあるかわからない
 インターネットの概念図は、ネットワークを雲の形で表現することが多い

「クラウド(雲)コンピューティング」と呼ぶ

クラウドコンピューティングの形態(p. 71)
SaaS(Software as a Service)

必要なときにインターネットを通じてソフトウェアを利用できる仕組み

これまで: ソフトウェアは1台1台の利用者用のコンピュータにインストールして利用

有料のものも無料のものも存在

PaaS(Platform as a Service)

OSやデータベースなどの基本的なソフトウェアをインターネットを通じて
利用できる仕組み

IaaS(Infrastructure as a Service)

コンピュータの基盤を提供するサービス

機材や回線、OSなどのシステムに必要なインフラ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

仮想化

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

仮想化(p. 72)
仮想化: ハードウェアのリソースを複数台分に、複数台を1台分に
見せかけて動作させること

リソース: CPUやメインメモリ、補助記憶装置、入出力装置などなどの
利用可能な資源

利用者それぞれの専用のリソースがあるように見せかけて利用者に使わせることが
可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

仮想化の方法[1](p. 72)
CPU

複数の実行させるプログラム(プロセス)の制御

起動の制御, 実行順序の管理, etc.

スレッドによる並行処理

スレッド: プロセスでの様々な処理を同時に実行させる方法

メインメモリ

仮想記憶装置の作成

メインメモリと仮想記憶装置の統合的な管理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

仮想化の方法[2](p. 72)
HDD/SSD

ファイルやフォルダ(ディレクトリ)の管理(ファイルシステム)

ファイルの作成・削除・ファイル名によるアクセス・ファイルの保護, etc.

入出力機器

入力機器からの入力、結果の出力機器への出力の制御

プログラム制御方式: 入出力のデータ転送をCPUが管理

チャネル制御方式: 入出力のデータ転送を「チャネル」という専用装置が管理(CPUを
介して転送)

DMAコントローラ方式:入出力のデータ転送を「DMAコントローラ」という専用装置が管理
(CPUを介さないで転送)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

5

OSの種類

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

以前のコンピュータ[1](p. 73)
メインフレームの時代: 機種に依存(機種ごとに異なる)

時代が進んでコンピュータ同士を接続して利用

現在: ある程度OSが標準化

各種OSでサーバ用OSとクライアント用OSに分けられている

同じハードウェアのコンピュータでも、どちらをインストールするかでサーバになったり
クライアントになったり

店で売られているPCはクライアント用OS

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

OSが違うと、接続プログラムが非常に複雑化

PCのOS[2](p. 73)
MS-DOS: PCの初期の頃によく使われていたOS

Microsoft-Disk Operating System

「コマンドプロンプト」が画面上に表示

コマンド(命令)を入力することで、OSに直接命令可能(マウスは使わず、キーボードから
命令を入力するだけ)

CUI(Character User Interface)のOS

CUI: 人間とのやりとりの接点(User Interface)が文字だけ

Mac OS: Apple社が開発したOS

GUI(Graphical User Interface)を初めて搭載したOS

GUI: マウスを使ってアイコンや、ボタン、入力フィールドなど、視覚的な操作が可能な
ユーザインタフェース(現在の形)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

現在のOS[1](p. 74)
Mac OS

1978年にApple社から提供された、GUIを持つ最初のOS

マウス操作やアイコンの概念を初めて導入

現在はMac OS X

Microsoft Windows

1985年にMicrosoft社から初めて提供されたGUIを持つOS

初期のWindows(Windows3.0, Windows3.1)はMS-DOSの拡張

Windows95で現在の原型

現在のWindow 10までバージョンアップをして様々な機能を追加

サーバ用OSも提供

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

現在のOS[2](p. 75)
UNIX

歴史

1969年にAT&T(アメリカの電話会社)から提供

1970年から1980年初期まで大学や研究所などで利用

現在はサーバとして多く利用

マルチユーザ環境

Solaris, AIX, SUN OSなど、様々な種類が存在(有料のものもフリーのものも
存在)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

現在のOS[3](p. 75)
Linux

1991年にリーナス・トーパスル(ヘルシンキ大学の学生)が開発

UNIX的なOS(使い方などがほぼUNIXと同じ)

オープンソースのフリーなOS

PCでも大型機でも利用(サーバとしても利用)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

6

マルチユーザ環境
1つのコンピュータを複数の人が同時に利用可能

ネットワークを使って、あるコンピュータAから別のコンピュータBにログイン
することができる

AにはなくてBにあるソフトウェアを利用したい場合(Aの前に別の人が座っている場合など)

遠くからBを操作する必要がある場合(コンピュータの管理など)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

ネットワークを使ってログイン
UNIXは可能
現在のMacは可能
Windowsは一部可能コンピュータB

コンピュータA

ファイルシステム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

フォルダの階層構造
どのファイルやフォルダが、どのフォルダの中に入っているか、ということを
表した構造

/: コンピュータ上で最も大きなフォルダ(ルートフォルダ)

全てのフォルダはこのフォルダの中に入っている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

/

Usersetc usr

k14x k13x staff

上にあるフォルダの中に、
下にあるフォルダが入っている
(「k14x」は「Users」の中に

入っている)

親フォルダ, 子フォルダ
親フォルダ: フォルダAの中にフォルダBが入っている場合、フォルダAを
フォルダBの「親フォルダ」と呼ぶ

子フォルダ:フォルダAの中にフォルダBが入っている場合、フォルダBを
フォルダAの「子フォルダ」と呼ぶ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 34

/

Usersetc usr

k13x k14x staff

「Users」の子フォルダ: 「k13x」や
「k14x」, 「staff」

「k13x」や「k14x」, 「staff」の
親フォルダ: 「Users」

パス
あるファイルやフォルダが、どの位置にあるかを表すもの

どのようにフォルダをたどれば、目的のファイルやフォルダにたどり着くかを表すもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 35

/

Usersetc usr

k13x k14x staff

k13xやk14x, staff:

ルートフォルダ(「/」)から見て、「Users」の中にある

絶対パス
ファイルやフォルダの、ルートフォルダ(「/」)から見た位置

ルートフォルダから、目的のファイル・フォルダへのパス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 36

k13xやk14x, staff: 「Users」の中にある

「/」で表す(Windowsでは「¥」)
ルートフォルダ: 「/」で表す

「k13x」の絶対パス: /Users/k13x

「k14x」の絶対パス: /Users/k14x

「staff」の絶対パス: /Users/staff

/

Usersetc usr

k13x k14x staff

7

相対パス[1]
あるファイル・フォルダから見た、別のファイル・フォルダの位置

ルートフォルダ以外のフォルダから、目的のファイル・フォルダへのパス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 37

k13xからWWWを見たとき: k13xと同じフォルダの中の「staff」の中の「WWW」

WWWからDocumentを見たとき:

WWWの1つ上の「staff」の1つ上の中の「k14x」の中の「Document」

/

Usersetc usr

k13x k14x staff

WWWDocument

カレントフォルダ

相対パス[2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 38

k13xからWWWを見た相対パス: ../staff/WWW

WWWからDocumentを見た相対パス: ../../k14x/Documents

※カレントフォルダ「./」は省略可能

WWWからDocumentを見たとき (WWW→Documentへの経路):

カレントフォルダ → WWWの1つ上のフォルダ → staffの1つ上のフォルダ→k14x → Document

k13xからWWWを見たとき(k13x→WWWへの経路):

カレントフォルダ → k13xの1つ上のフォルダ → staff→ WWW

カレントフォルダ:

「.」で表す

1つ上のフォルダ:

「..」で表す

パス(まとめ)
あるフォルダAにフォルダBが入っている: 「A/B」と表す

「/」は「¥」とも表す

フォルダのことを「ディレクトリ」とも呼ぶ

絶対パス

ルートフォルダは「/」と表す

相対パス

1つ上のフォルダ: 「..」で表す

「カレントフォルダの1つ上」に限らず、「1つ上のフォルダ」は必ず「..」と表す

カレントフォルダ: 「.」で表す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

パスの考え方[1]
1. 出発点から、線をたどって目的地までの経路を書く

出発点(絶対パス): ルートフォルダ

出発点(相対パス): カレントフォルダ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 40

/

Usersetc usr

k13x k14x staff

WWWDocument

Ex1 - Documentまでの絶対パス:

EX2 - k13xからWWWまでの相対パス:

絶対パスの経路

相対パスの経路

/ → Users → k14x → Document

k13x → Users → staff → WWW

パスの考え方[2]
2. カレントフォルダと1つ上のフォルダの名前を置き換え

カレントフォルダ(相対パスでの出発点): ./

1つ上のフォルダ: ..

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

Ex1 - Documentまでの絶対パス:

EX2 - k13xからWWWまでの相対パス:

/ → Users → k14x → Document

k13x → Users → staff → WWW

カレントフォルダ 1つ上のフォルダ
(この前のk13xからすると、1つ上のフォルダ)

. → .. → staff → WWW

パスの考え方[3]
3. 「→」を「/」または「¥」に置き換え

パスの中に1つ上のフォルダ「..」が含まれる場合は、カレントフォルダも省略

絶対パスの先頭は「//」とは書かずに「/」

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

Ex1 - Documentまでの絶対パス:

EX2 - k13xからWWWまでの相対パス:

/ → Users → k14x → Document

. → .. → staff → WWW

/Users/k14x/Document

../staff/WWW

8

やってみよう![1]
1. D3をカレントフォルダとして、D4の中にあるファイルaを指定する相対パスを
考えること

2. 1. と同じファイルの階層構造で、D5までの絶対パスを考えること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 43

D1

D2 D3

D4 D5
この中にある
「a」というファイル

カレントフォルダ

※2009年度ITパスポート 春期試験より

やってみよう![2]
ファイルシステムに関する次の記述中のa～cに入れる字句を考えること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 44

PCでファイルやディレクトリを階層的に管理するとき、最上位の階層に当たるディレクトリを
a ディレクトリ、現時点で利用者が操作を行っているディレクトリを b ディレクトリという。
b ディレクトリを基点としてファイルやディレクトリの所在場所を表す表記を c パスと

いう。

※2011年度ITパスポート 春期試験より

やってみよう![3]
 図に示す階層構造で、複数個の同名ディレクトリA、Bが配置されており、ユーザIDごとに
ログインしたときのカレントディレクトリが異なる。U0002がログインした直後に矢印が示す
ディレクトリBに存在するファイルfを指定するパスを考えること
 ディレクトリ間、ディレクトリとファイル間の区切りは「¥」で表す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 45

ルート

A B

A B

この中にある
「f」というファイル

※2012年度ITパスポート 秋期試験より

A B

A B

ユーザID ログイン時のカレントディレクトリ

U0001 ¥A¥B

U0002 ¥A¥B¥A

次回
OSのインストール実習

遅刻しないこと!

荷物運びのお手伝いをしてくれる人を募集

してくれる人は、次週8:55頃に8号館4階8413号室前に来てください。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 46

