
コンピュータ・サイエンス2

第2回
論理回路

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

第2回の内容
論理回路

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

中央処理装置(CPU)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3

CPU(p. 39)
 プログラムの命令をメインメモリから取り出して解釈し、実行するための
装置

 プログラム: コンピュータへの命令の集合

 「プログラミング言語」という人間が理解できる言葉で書かれた命令の集合

プログラミング言語の命令を、機械語(0と1の2進数)に翻訳した命令の集合

機械語のプログラムをメインメモリの中に格納

メインメモリの中は番地を割り振って領域が分割され、様々な命令やデータが
格納されている

 メインメモリへの命令の格納と管理もCPUの役目

それぞれの命令をどの番地に格納するか, etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

CPUの構成[1](p. 39)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

プログラムカウンタ

命令レジスタ

アキュムレータ

オペランドレジスタ

条件コードレジスタ

デコーダ

ALU

命令

データ

CPU

メインメモリ

CPUの構成[2](p. 39)
 プログラムカウンタ: メインメモリに格納されている命令を取り出すための
番地を指定

命令レジスタ: 取り出した命令を一時的に格納

命令: 命令コードとオペランドから構成

命令コード: データ転送や様々な計算、入出力処理などの処理方法

オペランド: 命令で使用するデータが格納されている番地や値など

 デコーダ(解読器): 命令コードを解読し(何をすれば良いかを考え)、
命令を実行するための信号を出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

CPUの構成[3](p. 40)
 ALU(演算器): 演算(四則計算や論理演算など)を実行

 メモリやレジスタの記憶されているデータを取り出し

演算に使うデータ(演算数)をアキュムレータに格納
演算数: 「xxされる」側のデータ

 Ex. 「A + B」の「A」

演算に使うデータ(被演算数)をオペランドレジスタに格納
被演算数: 「xxする」側のデータ

 Ex. 「A + B」の「B」

演算結果をアキュムレータに置き換え

条件コードレジスタに条件コードを設定(必要な場合)
正負の符号の判定やオーバーフローの判定など

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

CPUの動作例[3](p. 40)
 アキュムレータ: 演算に使うデータや演算結果の格納場所

 オペランドレジスタ: 演算に使われるデータの格納場所

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

アキュムレータ

オペランドレジスタ

ALU

Step 9: アキュムレータから「10」を取り出す

Step 10: オペランドレジスタから「20」を取り出す

Step 12: 計算結果「30」を
アキュムレータに格納するStep 11:

「10+20」を計算する

CPUの性能(p. 40)
 クロック周波数: CPUが一段階の動作を行う時間単位(サイクルタイム)

単位: Hz(ヘルツ)

 Ex. 1GHz = 1000000000Hz(10億Hz)

= 1秒間に10億回動作

同じモデルのCPU同士であれば、クロックの数値の大きいものが処理が速い

モデル: CPUのブランドのようなもの

 モデルが違えば、同じメーカーでも一概には比較できない

 CPUが行う一段階分の動作は、CPUのモデルなどによって異なるため

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

論理回路

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

論理回路[1](p. 34)
論理回路: 論理演算を実現する電子回路

電子回路: 電気を流すことで様々な処理をする部品

論理演算: 論理型のデータ同士に対する演算

論理型: 「0」または「1」の2種類のみの2進数で表現できるデータ

 1つまたは2つのデータを入力とし、演算結果を出力

 CPUの構成要素(ALUやレジスタなど)は論理回路で構成

 コンピュータは、様々な処理をするための回路で構成

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

論理回路[2](p. 36)
論理回路をMIL(Military standard)記号を用いて表現

 MIL記号: 論理回路を構成する部品をイメージ化したもの(図として描くときに
利用される絵)

 1つ1つの部品を「論理ゲート」と呼ぶ

 ANDゲート

ORゲート

NOTゲート

NANDゲート

NORゲート

 XORゲート

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

論理ゲート(p. 36)
論理回路を構成する部品の最小単位

 「入力」と「出力」の電気信号で構成

 「入力」対し、何かの処理をして「出力」とする

入力: 0または1の1ビット

出力: 0または1の1ビット

 1つの論理ゲートに、入力は1つまたは2つ、出力は1つ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

論理ゲートの基本的な形

入力(通常、1つ
または2つ)

論理ゲート本体(この形が何かに
よって、出力がどうなるかが決まる)

出力(1つだけ)

論理積[AND][2](p. 36)
論理回路は「ANDゲート」で表現

 2つの入力がどちらも「1」の場合、出力が「1」、2つの入力のどちらかが
「0」の場合、出力が「0」

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

入力 出力(f)

x y

0 0 0

0 1 0

1 0 0

1 1 1

x(入力)

y(入力)
f(出力)

入力と出力の関係

ANDゲート

論理和[OR][2](p. 37)
論理回路は「ORゲート」で表現

 2つの入力がどちらかが「1」の場合、出力が「1」、2つの入力のどちらも
「0」の場合、出力が「0」

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

入力 出力(f)

x y

0 0 0

0 1 1

1 0 1

1 1 1

x(入力)

y(入力)
f(出力)

入力と出力の関係

ORゲート

否定[NOT](p. 37)
 1つの入力で、「0」の場合は出力が「1」となり、「1」の場合は出力が
「0」となる

入力の逆が出力

論理回路は「NOTゲート」で表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

x(入力) f(出力) 入力(x) 出力(f)

0 1

1 0

入力と出力の関係

NOTゲート

NAND[Not AND](p. 37)
 ANDゲートと出力が逆になる

 2つの入力がどちらも「1」の場合、出力が「0」となり、2つの入力のどちらかが
「0」の場合、出力が「1」となる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

NANDゲート

入力 出力(f)

x y

0 0 1

0 1 1

1 0 1

1 1 0

x(入力)

y(入力)
f(出力)

入力と出力の関係

NOR[Not OR](p. 37)
 ORゲートと出力が逆になる

 2つの入力がどちらかが「1」の場合、出力が「0」となり、2つの入力のどちらも
「0」の場合、出力が「1」となる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

NORゲート

入力 出力(f)

x y

0 0 1

0 1 0

1 0 0

1 1 0

x(入力)

y(入力)
f(出力)

入力と出力の関係

排他的論理和[XOR](p. 37)
 XOR: eXclusive OR

 2つの入力が同じ場合は「0」となり、2つの入力が異なる場合は
「1」となる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

XORゲート

入力 出力(f)

x y

0 0 0

0 1 1

1 0 1

1 1 0

x(入力)

y(入力)
f(出力)

入力と出力の関係

真理値表(p. 37)
真理値表: 論理ゲートの入力と出力を表にしたもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

入力 出力

x y AND OR NAND NOR XOR

0 0 0 0 1 1 0

0 1 0 1 1 0 1

1 0 0 1 1 0 1

1 1 1 1 0 0 0

入力(x) 出力(NOT)

0 1

1 0

入力xが0、入力yが0のとき、AND

ゲートの出力は0になる、という意味

組み合わせ回路(p. 37)
組み合わせ回路: 入力された内容によって出力が1つに決定される回路

複数の論理回路の入力と出力をつなぐことで構成

入力が何であるかで出力が決まる回路

入力: 電気が線の中を通っているかいないかの状態

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

組み合わせ回路[例]
組み合わせ回路の真理値表

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

入力 interval 出力
(f)x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x

y z
f

interval

0

0

1

1

1

1

1

1

1

1

1

0

1

0

1

0

1. 入力xとyの出力を求める
(この出力を「interval」とする)

 intervalはxとyのOR

2. intervalと入力zの出力fを求める
 出力fはintervalとzとのNAND

真理値表完成の手順

やってみよう!
回路の真理値表をそれぞれ埋めてみよう!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

入力 出力
(f)x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x

y z

x

y z

f

f

x
fy

2進数での足し算の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

足し算をする方法[1](p. 6)
 10進数での1桁の足し算

 たくさん(10×10=100)のパターンが存在

 1+1, 1+2, 1+3, … 2+1, 2+2, 2+3, … … 8+6(繰り上がり1), 8+7(繰り上がり
1), … …

 2進数での1桁の足し算

 4通り

足した結果が2になると繰り上がり1(2進数では10進数の2を「10」と表すため)

 0+0, 0+1, 1+0, 1+1(繰り上がり1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

足し算をする方法[2](p. 6)
基本的な2進数の足し算の方法は10進数と同じ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

2 1 1

0 1 1 0

0 1 0 1+

計算結果: 1011(10進数で11)

0110(10進数で6)と0101(10進数で5)の足し算

0

1 0(2進数で表記)

=

この桁(3桁目)に残すもの

1

繰り上がり

11 1

0 1 1 0

0 1 0 1+

0 1 1

0 1 1 0

0 1 0 1+

桁あふれ(オーバーフロー)[1]
 コンピュータでは数を表すビット数(2進数の桁数)は決まっている

計算の結果、決まった桁数を超えると…?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

0 1 10

1 1 1 0
0 1 0 1+

Ex. 数を4ビット(4桁)で表す場合

1110(10進数で14)と0101(10進数で5)の足し算

1

桁あふれ(オーバーフロー)[2]

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

0 1 10

1 1 1 0
0 1 0 1+

Ex. 数を4ビット(4桁)で表す場合

1110(10進数で14)と0101(10進数で5)の足し算

1

5ビット目(5桁目, 決められた桁数を越えてしまった部分)

決められた桁数を越えた部分は無視される(捨てられてしまう)

計算結果: 0011(10進数で3)

計算結果が決められた桁数を超えること:

桁あふれ(オーバーフロー)

1 0 0 1 1

無視される(捨てられる)

桁あふれ(オーバーフロー)[3]
 コンピュータの世界では、数を表現する2進数の桁数は常に一定

計算内容などによる変化はなし

通常は、32桁または64桁で数を表現

授業のスライドは、そんなに長く書けないので、小さい桁数で表現

桁あふれ(オーバーフロー)が起こると...

本来の計算結果とコンピュータでの結果が違ってしまう

 Ex. 4桁の2進数1110と1010の計算結果: 10011

 10011は5桁になってしまったので、0011という4桁で表現
→本来の計算結果とは違う結果

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

桁あふれ(オーバーフロー)の扱い[1]
 コンピュータでは、2進数の各桁を、1つずつ箱に入れて扱っている、という
イメージ

各桁を入れる箱の数に限りがある

 Ex. 数を4ビットで表す = 数を4桁で表す(2進数の各桁を入れる箱の数が4個)

 どのような計算をしたとしても、箱の数は変更されない

 Ex. 数を4ビットで表すときに、(1110 + 0101)2の計算結果も
4ビットでしか表現できない(箱は4個しかない)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

本来の計算結果(人間が自分の手で行った計算結果)とコンピュータが
行った計算結果(Ex. 電卓などの計算結果)が違ってしまう現象

桁あふれ(オーバーフロー)の扱い[2]
 2進数の各桁を入れる箱は、小さい桁(右の桁)の分から用意される

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

1 1 1 0

0 1 0 1+

1 0 0 1 1

1 1 1 0

0 1 0 1+

計算結果を入れるために
用意されている箱

計算の結果、5桁目に突入してしまった
but...

箱は4つしか用意されていない

5桁目は無視されるので計算結果は(0011)2

加算回路

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 34

加算器(p. 37)
加算器: CPUの中で、2進数1桁の足し算をするための回路

半加算器: 繰り上がりの加算をしない回路

入力: 1ビットの数2つ

出力: 2つの数を足した結果と繰り上がり

全加算器: 繰り上がりの加算をする回路

入力: 1ビットの数2つと1つ下の桁からの繰り上がり

出力: 3つの数を足した結果と繰り上がり

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 35

半加算器
 2進数1桁の数2つの加算をする回路

入力: 2進数1桁の数2つ

出力: 2つの数の和と繰り上がり

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 36

x(入力)

y(入力)

f(出力・xとyの和)

c(出力・xとyの和のうちの繰り上がり)

入力 出力

x y c f

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

全加算器[1](p. 37)
 2進数1桁の数2つの加算をする回路

入力: 2桁の数2つと1つ前の桁からの繰り上がり

出力: 2つの数の和と繰り上がり

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 37

xi(入力)

yi(入力)

fi(出力・xとyの和)

ci(出力・xとyの和の
うちの繰り上がり)

ci-1(入力・1つ前の桁からの
繰り上がり)

i: i桁目の2進数

全加算器[2](p. 37)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 38

入力 出力

xi yi ci-1 ci fi

0 0 0 0 0

0 1 0 0 1

1 0 0 0 1

1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 1 1 1

FA

ci-1

xi

yi

fi

ci

全加算器の略表記
(i: 2進数の中のi桁目)

ci-1

xi

yi

fi

ci

※テストの時に真理値表などが示されるかどうかは、その時々で異なる
(2009年度秋の基本情報技術者試験の問題では、何もなし)

全加算器[3](p. 37)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

FA

ci-1

xi

yi

fi

ci

全加算器の略表記
(i: 2進数の中のi桁目)

ci-1

xi

yi

fi

ci

全加算器: 2進数1桁の足し算を行う回路

1 1 0

0 1 0+)

全加算器が3つ必要
(1つの桁を1つの全加算器で計算)

Ex. 2桁目の計算は...

FA

c1

x2

y2

f2

c2

全加算器[4](p. 37)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 40

1 1 0

0 1 0+)

入力 出力

xi yi ci-1 ci fi

0 0 0 0 0

0 1 0 0 1

1 0 0 0 1

1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 1 1 1

0

c1(1桁目からの
繰り上がり)

x2

y2

FA

c1

x2

y2

f2

c2

x2 : 1, y2 : 1, c1 : 0

2桁目の計算結果: f2 : 0, c2 : 1

全加算器[5](p. 37)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

1 1 0

0 1 0+)

計算結果(2進数で):

1 0

加算回路での計算は、必ず真理値表に従う
 人間がするような計算はしていない
 オーバーフローが起こらない限り、人間が計算した結果と加算回路での結果は同じになる

繰り上がり(c2) 和(f2)

加算回路[1](p. 37)
加算回路: ALUの中で足し算をするための回路

全加算器を複数組み合わせることで構成

全加算器をいくつ組み合わせるかで、何桁の2進数の足し算ができるかが決定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

加算回路[2](p. 37)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 43

FA

0

x1

y1

f1

FAx2

y2

f2

FAx3

y3

f3

c3

c2

c1

3桁の加算回路

1桁目の計算
(c0の部分は、0桁目の計算が
存在しないので「0」を入れる

2桁目の計算

3桁目の計算 1 1 0

0 1 0+)

加算回路[3](p. 37)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 44

FA

0

x1

y1

f1

FAx2

y2

f2

FAx3

y3

f3

c3

c2

c1

3桁の加算回路

1 1 0

0 1 0+)

計算結果(2進数で):

1 0

2桁目の足す数

2桁目の足される数

2桁目の足し算の結果(2桁目に残す数)

2桁目の足し算の結果(3桁目への繰り上がり)

加算回路[2](p. 37)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 45

FA

0

x1

y1

f1

FAx2

y2

f2

FAx3

y3

f3

c3

c2

c1

3桁の加算回路
※x0の部分は、0桁目の数の繰り上がりは
存在しないので「0」を入れる

x1x2x3

y1y2y3

1 1 0

0 1 0+)

例えば…

f1: 0, c1: 0

f2: 0, c2: 1

f3: 0, c3: 1

やってみよう!
全加算器で2進数の足し算をしてみて、結果が
正しいことを確認しよう

 01101 + 01100 (2進数5桁, 結果は11001)

 0011 + 0110 (2進数4桁, 結果は1001)

全加算器において、入力xが1、入力yが0、入力zが1のとき、出力c(繰り
上げ)とf(和)はどれになるか

 ア: c - 0, f - 1

 イ: c - 0, f - 1

 ウ: c - 1, f - 0

 エ: c - 1, f - 1

(2009年度基本情報技術者試験秋期問題より)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 46

フリップフロップ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 47

順序回路(p. 38)
順序回路: 入力された内容と過去の入力の内容によって出力が
決定される回路

 「現在」の入力内容と、「過去」の入力によって設定された現在の回路の状態に
よって出力が決定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 48

過去の入力や状態を記憶しておく必要

フリップフロップ回路

※組み合わせ回路: 「現在」の入力内容のみで出力が決定

フリップフロップ回路[1](p. 38)
 フリップフロップ回路: 状態を保持しておくための回路

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 49

S R Q'

0 0 Q(状態保存)

0 1 0(リセット状態)

1 0 1(セット状態)

1 1 ー(禁止)

S

R

Q

Q

SRフリップフロップ

フリップフロップ回路[2](p. 38)
 セット入力: S=1, R=0を入力した状態

出力Q=1となる

 セット入力の後、Sを0にしてもQ=1の状態が保持される

 リセット入力: S=0, R=1を入力した状態

出力Q=0となる

 リセット入力の後、Sを1にしてもQ=0の状態が保持される

 その他の入力

 S=0, R=0のとき: この入力の直前の状態のまま

 S=1, R=1のとき: 状態が不安定になるので禁止

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 50

フリップフロップ回路[3](p. 38)
 2つの安定状態

 セット入力をした状態(セット状態)

 リセット入力をした状態(リセット状態)

一方の安定状態からもう一方の安定状態へ、入力を切り替えることで
遷移

入力を切り替えるまで、1つの状態(2進数1桁)を保持している
→1つのデータを記憶している

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 51

