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第11回の内容
データ構造とアルゴリズム(続き)
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前回の復習
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情報の隔離[1](p. 110)

重要な情報を守るために...

守るべきものを隔離する

必要最低限の人や機器だけが利用可能にする
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 安全性と利便性は常に対立関係
 安全性を上げれば利便性が下がり、利便性を上げれば安全性が下がり...という関係

安全性と利便性のバランスを考慮してセキュリティポリシーで情報保護の方針を決定



情報の隔離[2](p. 110)

ファイアウォールの設置

 ファイアウォール: 組織内と外部との間に設置して組織内に不正に
アクセスされないように監視するコンピュータ

外部からのパケットの監視(アクセス制御)

• 許可されていないIPアドレス(インターネット上の住所)からパケットが送信されていないか?

• 許可されていないポート(データの出入り口)にパケットが送信されてきていないか?
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許可されていないアクセスを遮断(フィルタリングと呼ぶ)



コンピュータAへ送られる

情報の隔離[3](p. 110)
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ファイア
ウォール

コンピュータA

コンピュータB

コンピュータC

コンピュータAへの許可されているパケット

コンピュータBへの許可されていないパケット

拒否して廃棄

インターネット

組織内

個人用のファイアウォール(パーソナルファイアウォール)も存在するので、
利用して情報を守ろう!

 OSに付属しているもの
 ウィルスソフトと一体になっているもの



情報の隠蔽[1](p. 111)

インターネット上での通信(メール, Web, etc.)

 データがそのままの形で送受信される
= パスワードなどの個人情報がそのままインターネット上に流される

= 途中で盗聴されてデータが盗まれる可能性もある
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インターネット上での盗聴は、仕組み上防ぐことは難しい

 データを暗号化し、盗まれても中身を理解不能にする
 正当な受け取り主は、暗号を解読して本来のデータを見ることが
できるようにする



情報の隠蔽[2](p. 111)

暗号化: データを別の形に加工すること

 データが元の形と違っているので、データを見ても内容がわからない

 Ex. This is a pen. → Uijt jt b qfo.

• 暗号化の方法: アルファベットを1文字後ろにずらす

復号化: 暗号化されたデータをもとの形に戻すこと

復号化する方法を知らなければ、もとのデータの内容がわからない

 Ex. Uijt jt b qfo. → This is a pen.

• 復号化の方法: アルファベットを1文字前にずらす
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情報の隠蔽[3](p. 111)

暗号化通信: 利用者の使っているコンピュータで暗号化をして送り、
サーバ側で復号化する通信方法
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クライアント
サーバ

暗号化されたデータ

サーバでデータを復号化

データを盗んでも
解読できない

どこかのコンピュータ



情報の隠蔽[4](p. 111)

共通鍵暗号方式(秘密鍵暗号方式とも呼ぶ)

 データを暗号化するために「暗号鍵」を使う

• 暗号鍵: データを暗号化するために使うキーワード(キーワードが長ければ長いほど、
暗号が解読されにくい)

 データを暗号化するときと復号化するときで、同じ暗号鍵を使う

欠点1: データを送る側と受け取る側で暗号鍵を受け渡しする方法が難しい

• 下手な方法では、途中で盗まれてしまう

欠点2: 相手ごとに暗号鍵を用意する必要がある
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情報の隠蔽[5](p. 111)

公開鍵暗号方式

 「公開鍵」と「秘密鍵」という2種類の暗号鍵を使う方法

• 公開鍵: データを暗号化するための暗号鍵

• 秘密鍵: データを復号化するための暗号鍵

 データのやりとりの方法

1. データの受け取り主が公開鍵と秘密鍵を作成

2. データの受け取り主が公開鍵をデータの送信者に受け渡し

3. データの送信者がデータを公開鍵で暗号化し、送信

4. データの受け取り主が秘密鍵でデータを復号化
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送信者 公開鍵で暗号化

暗号化された
データ

秘密鍵で復号化 受信者



情報の隠蔽[6](p. 111)

公開鍵方式

秘密鍵を知らなければ、データを復号化できない仕組み

公開鍵と秘密鍵は対

秘密鍵は、データを受け取る側しか知らない暗号鍵

• 他の人に知られてはならない暗号鍵

公開鍵は、他人に知られても良い暗号鍵

利点: 秘密鍵を割り出そうとすると、膨大な時間がかかるので、事実上不可能

欠点: 共通鍵暗号方式に比べて、復号化処理に時間がかかる
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情報の隠蔽[7](p. 111)

WWWでは、公開鍵暗号方式を利用

 SSL(Secure Socket Layer)と呼ばれている

Webの場合、URLが「https://」で始まっていれば、SSLでの通信

 https: HTTP over SSL

 「http://」の場合は、普通の暗号化しない通信
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Webでの個人情報の入力時には、URLがhttpsで
始まっているかどうかを確認しよう!



アルゴリズム
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アルゴリズムとは[1](p. 118)

アルゴリズム: ある問題を解決するときに必要な処理手順

プログラムでの処理の方法を記述したもの

何をどのように行うかを記述

 コンピュータには手順を1つ1つ詳細に指示する必要

• 人間には一言ですむような処理でも、コンピュータがその処理をこなすには、たくさんの
手順が必要
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アルゴリズムの書き方(p. 119)

文章で書く

箇条書きで書くことも多い

プログラミング言語に自然言語を混ぜて書く(疑似言語)

自然言語: 普段人間が話したり書いたりしている言葉

図で描く

 フローチャート(流れ図)を使うことが多い
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フローチャート[1](p. 119)

記号や矢印などを使って処理の流れを描いた図

順次処理、条件分岐、反復処理が基本

順次処理:プログラム中に書いてある命令を、上から順に1つずつ処理すること

条件分岐:ある条件を満たしたときとそうでないときで、処理内容が変わること

反復処理:ある条件が満たされている限り、処理を繰り返すこと
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記号 意味

フローチャート[2](p. 119)
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開始と終了

処理

条件判断

処理の流れ

開始

服を買う

靴を買う

終了

順次処理の例



フローチャート[3](p. 119)
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服を買う

開始

服の値段が
10000円以下

終了

はい

いいえ
晴れている

開始

終了

はい

いいえ

歩く バスに乗る

条件分岐の例1
(条件判断が「いいえ」の場合何もしない)

条件分岐の例2
(条件判断が「いいえ」の場合別のことをする)



フローチャート[4](p. 119)
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開始

終了

はい

いいえ

折りたたみ傘を
持っていく

長傘を持っていく

雨の確率が
10%未満

雨の確率が
50%未満

いいえ

はい

条件分岐の例3
(条件が複数あり、それぞれ違う処理をする)



フローチャート[5](p. 119)
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曲を1回練習する

開始

練習回数が
10回以下

終了

はい

いいえ

反復処理の例
(最初に条件を判断)

曲を1回練習する

開始

練習回数が
10回以下

終了

はい

いいえ

反復処理の例
(最初に処理をしてから条件を判断)



探索アルゴリズム
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探索アルゴリズム[1](p. 121)

探索: たくさんのデータから目的のデータを見つけること
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Ex. 高校の生徒の得点を管理するプログラム
 出席番号5番の生徒の英語の点数を知りたい
→高校の生徒の配列から、出席番号が「5」というものを探す

 「東京子」という生徒の国語の点数を知りたい
→高校の生徒の配列から、名前が「東京子」というものを探す



探索アルゴリズム[2](p. 121)

様々な探索アルゴリズム

逐次探索

 2分探索

自己組織化探索

 2次元探索

補間探索

 ハッシュ法
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逐次探索[線形探索](p. 121)

 データを前から順番に比較して探していく方法
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添え字 0 1 2 3 4 5 6 7

データ 21 13 98 31 44 87 72 50

データの中から「98」を見つけたい!

1. 添え字「0」のデータをチェック: 違う
添え字 0 1 2 3 4 5 6 7

データ 21 13 98 31 44 87 72 50

添え字 0 1 2 3 4 5 6 7

データ 21 13 98 31 44 87 72 50

添え字 0 1 2 3 4 5 6 7

データ 21 13 98 31 44 87 72 50

2. 添え字「1」のデータをチェック: 違う

3. 添え字「2」のデータをチェック: 同じなので見つかった!



二分探索[1](p. 121)

 小さい順に並べられたデータの中から、中央の
データと目的のデータを比較することで、探す方法

1. 中央のデータと探したいデータを比較する

2. 1. の結果、中央のデータが大きければ、探したいデータは右半分、
そうでなければ左半分を、探索対象とする
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中央のデータと探したいデータが同じになるまで繰り返す



二分探索[2](p. 121)
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添え字 0 1 2 3 4 5 6 7

データ 13 21 31 44 50 72 87 98

データの中から「98」を見つけたい!

1. 中央のデータ(44)と目的のデータ(98)を比べる
→目的のデータ(98)の方が大きいので、右半分は探索対象にする

添え字 0 1 2 3 4 5 6 7

データ 13 21 31 44 50 72 87 98

2. 中央のデータ(72)と目的のデータ(98)を比べる
→目的のデータ(98)の方が大きいので、右半分は探索対象にする

添え字 4 5 6 7

データ 50 72 87 98



二分探索[3](p. 121)
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3. 中央のデータ(87)と目的のデータ(98)を比べる
→目的のデータ(98)の方が大きいので、右半分は探索対象にする

添え字 6 7

データ 87 98

4. 中央のデータ(98)と目的のデータ(98)を比べる
→同じなので見つかった!

添え字 7

データ 98



整列(ソート)アルゴリズム(p.123)
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整列[ソート](p. 123)

ソート: 複数の数を小さい順or大きい順に並べること

選択ソート

 バブルソート

挿入ソート

 クイックソート

 etc.
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選択ソート[1](p. 123)

変数t: 並べ替えをする数の中で最も小さい数を入れておく変数

変数i: 並べ替えをする数の中で、tが最初から何番目の位置にあるかを
表す変数

変数j: 何回繰り返したかを数えるための変数

並べ替えをする数はn個とする
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選択ソート[2](p. 123)

1. tに並べ替えをする数の一番最初の数を代入する

2. iに1を代入する

 1: 並べ替えをする数の一番最初の数の位置

3. jに2を代入し、1ずつ増やしながらnになるまで以下を繰り返す

 tがj番目の数より大きいならば、j番目の数をtに代入し、iにjの値を代入する

4. 並べ替えをする数の一番最後の数とtを入れ替える
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 この処理を1回するごとにjの値を1増やす
 jの値は、現在調べている数の位置になる



選択ソート[2](p. 123)
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4 2 58

4 5 28

 tに4を代入する
 iに1を代入する

ステップ1:

 jに2を代入する
 tの値(4)と8を比べる
 tの値の方が小さいのでそのまま

ステップ2:

 jの値を1増やす(3になる)

 tの値(4)と2を比べる
 tの値の方が大きいのでtに2を代入し、

iにjの値(3)を代入する

ステップ3:

 jの値を1増やす
 tの値(2)と5を比べる
 tの値の方が小さいのでそのまま

ステップ4:

 tの値(2)を最後に置く
 これまで最後だった数(5)をi番目に入れる

ステップ5:

 最も小さな数が一番後ろに来る
 次は、一番後ろの1つ前まで(8, 4, 5)で
同じようにする



バブルソート[1](p. 124)

前から2つずつ、数の大きさを比較して、小さい数を後ろに送っていく

最後まで調べると、最も小さな数が一番後ろにある

 この作業を、並べ替える数の個数だけ繰り返すと、数が大きい順に並ぶ
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バブルソート[2](p. 124)
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4 2 58

比べる

4より8の方が大きいので交換

8 2 54

比べる

2より4の方が大きいのでそのまま

8 2 54

比べる

2より5の方が大きいので交換

8 5 24

 最も小さな数が一番後ろに来る
 次は、一番後ろの1つ前まで(8, 4, 5)で
同じようにする

比べる



その他
挿入ソートのアルゴリズム(p. 125)は、教科書をよく読んでおくこと
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アルゴリズムのよしあし
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良いアルゴリズム(p. 126)

そのアルゴリズムを使ったプログラムをコンピュータで実行するときの
処理時間や記憶領域の使用量

アルゴリズムのわかりやすさ・作りやすさ・修正の容易さ
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アルゴリズムの計算時間(p. 126)

アルゴリズムをコンピュータで実行したときの処理時間

 CPUそのものの速さ

 CPUとメインメモリとの間のアクセスの速さ

 etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

これらを除いても、同じ結果を出す複数のアルゴリズムで計算時間に違いが出る

アルゴリズムの計算量

※同じコンピュータで同じアルゴリズムの処理をしても、そのときどきで処理に必要な時間が異なる



アルゴリズムの計算量(p. 126)

CPUの速さなど、アルゴリズムには関係ない要因を除いた、
アルゴリズムそのものの計算時間

 アルゴリズムそのものの計算(処理)の速さ

アルゴリズムでの計算の複雑さ
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アルゴリズムのわかりやすさ(p. 126)

一旦完成したプログラム: 機能の追加などのためにプログラムの修正が
必要なことも多い
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アルゴリズムの修正

プログラムを読んで理解する = 書かれてあるアルゴリズムの理解が必要
 アルゴリズムが難解≒修正が難しい
 アルゴリズムが簡単≒修正が容易

人がプログラムを
読んで理解する



アルゴリズムを使う状況(p. 126)

多くの場合、計算量の少ない(処理時間の速い)アルゴリズムと
わかりやすいアルゴリズムは対立関係

計算量が少なければ、わかりにくいアルゴリズム

 わかりやすければ、計算量が多いアルゴリズム
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速さをとるか、わかりやすさをとるかは、状況に応じて判断
 めったに使わないプログラムや頻繁に修正するプログラム: わかりやすいアルゴリズム
 よく使うプログラムや計算時間に制約があるプログラム: 速いアルゴリズム



ソートアルゴリズムの比較[1](p. 126)

結果が出るまでの基本処理の回数(アルゴリズムの計算量)

 バブルソート: N(N-1)/2

併合ソート:  N/2+(N-1)log2N

※log2N: Nを2kとしたときの「k」
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Nが大きければ大きいほど、併合ソートの方が速い

N: 並べ替える数の個数

N N(N-1)/2(バブルソート) N/2+(N-1)log2N(併合ソート)

8 28 25

32 496 171

64 2016 410

128 8128 953



ソートアルゴリズムの比較[2](p. 126)

計算量: 入力(N: 並べ替えの場合は数の個数)に対して行われる
基本処理の回数

 Nが十分に大きなとき: 計算式の中の最も大きな項だけに着目して、
大まかに計算
= 各項の比例定数や次数の低い項は無視

• バブルソート: N(N-1)/2 = N2/2 – N/2

→N2のみに注目

• 併合ソート: N/2+(N-1)log2N = N/2 +Nlog2N – log2N

→Nlog2Nのみに注目
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アルゴリズムの計算量は、正確な計算量ではなく、Nが大きくなればどの程度の割合で
計算量が増えるかを大まかに知ることが重要なため

注目する項を取り出して、O(...)と表記
 O(N2)やO(Nlog2N)など



ソートアルゴリズムの比較[3](p. 126)

計算時間の速いアルゴリズム: NやlogNなどのみで計算量が計算できる
アルゴリズム

計算時間の遅いアルゴリズム: N2, N3, ..., NkやN!(1からNまでを
かけあわせた数), 2Nなど、多くのかけ算を計算に必要とするアルゴリズム

 N2, N3などの計算を必要とするアルゴリズム: 多項式時間アルゴリズム

 N!や2Nなどの計算を必要とするアルゴリズム: 指数時間アルゴリズム
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扱いにくい問題
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扱いにくい問題(p. 127)

コンピュータでの処理が難しい問題も存在
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n logn n nlogn n2 n3 2n n!

10 0.0000003 0.000001 0.000003 0.00001 0.0001 0.0001024 0.36

20 0.0000004 0.000002 0.000009 0.00004 0.0008 0.1048576 7700年

30 0.0000005 0.000003 0.000015 0.00009 0.0027 107 8×1018年

50 0.0000006 0.000005 0.000028 0.00025 0.012 3.4年

100 0.0000007 0.00001 0.000066 0.001 0.1 4×1015年

10000 0.0000013 0.001 0.0133 10 1.2日

1000000 0.0000023 1.0 23 116日 3200000年

※「日」や「年」の書いていない数の単位は「秒」

データの個数に対する処理時間
(1回の処理に0.0000001秒かかるコンピュータ)



扱いにくい問題[ナップザック](p. 127)

重さと値段のわかっているN個の荷物をナップザックに詰め込むとき、
合計金額を最大いくらにできるか

荷物の重さの合計はWを超えてはならない
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解答例: 荷物の全ての組み合わせを作って
重さの合計と金額の合計を計算

荷物がN個の場合、荷物の組み合わせは2N通り
= 重さの合計と金額の合計を2N回計算する必要

例えば...

荷物が60個、計算の基本処理1回分が1000万分の1秒の場合:

1/1000万×260 秒≒ 3000年

アルゴリズムを作ることはできるが、
計算時間が非現実的!



扱いにくい問題[セールス](p. 127)

セールスパーソンが、A0町(駅)からN個の町(駅)を回ってA0町(駅)に
帰るまでに最小のコスト(交通費)の経路を求める
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解答例: A0から始まって、N個の町を回って帰ってくることができる全ての経路を考え、
それぞれの経路のコストの合計の中で最小のものを求める

町がN個の場合、経路の組み合わせは(N-1)!通り
= 調べなければならない経路が(N-1)!通り

例えば...

町が30個、計算の基本処理1回分が100万分の1秒の場合
(30 – 1)!×1/100万 = 8.8×1030回×1/100万≒ 3800年

アルゴリズムを作ることはできるが、
計算時間が非現実的!



扱いにくい問題への対応(p. 127)

入力が特殊な条件を満たす場合は、扱いやすくなることもある

最適解でなく、近似解で良ければ、扱いやすくなる

最適解: 最も良い答え

近似解: 最も良いわけではないかもしれないが、他の多くの答えよりは良い答え
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次回(1/5)

実習のため、24102教室に集合
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