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第8回の内容

• コンピュータでの文字の扱い方(1)
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前々回の質問の回答
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16進数

• 練習問題: (55)8を16進数になおすこと
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(55)8 = (45)10

4516

2・・・余り: 1316

0・・・余り: 2

(55)8 = (2D)16

(13)10 = (D)16

16進数、つまり(2D)16は数!

 1つ1つの桁の文字がなんであるかによって、
数の大きさを表現

 各桁の文字の並びの順序が違ってしまうと、違う数
 (45)10と(54)10は違う数!

(2D)16と(D2)16は違う数!

 余りを並べる順序を間違わないように注意



前回の復習
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小数を表現する方法(p. 10)

• 固定小数点方式

• 浮動小数点方式
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固定小数点方式[1](p. 10)

• 小数部分の桁数をあらかじめ決めておく方法
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Ex. 2進数で表現した数の右から2ビットを小数部分とする場合

10進数の小数 2進数の小数

0.00 00 00

0.25 00 01

0.50 00 10

0.75 00 11

1.00 10 00

1.25 10 01

1.50 10 10

… …

3.75 11 11

小数部分は1/22刻み(0.25刻み)で表現



固定小数点方式[2](p. 10)

• 小数部分の桁数がnの場合: 2進数では、小数部分が1/2n刻みで表現
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nを大きくすると、それだけ小数部分を細かく表現可能

※ただし、実際コンピュータは小数も2進数で考えているが、人間が考えるときの便宜上、
10進数で考えることが多い



固定小数点方式[3](p. 10)

• 小数を表す桁数が決まっていると…
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Ex. 右から2桁を小数部分とすると…

(2 ÷ 1000)10 = (0.002)10→(0.00)10

小数を正確に表現できない

何桁分の小数部分を持っているかは数値によって異なる
=固定小数点方式で小数を表せる場合は少ない

浮動小数点方式



浮動小数点方式[1](p. 10)

• 小数: D × 10nと表現できる

• Ex. 

 0.5 = 5×10-1

 -0.0625 = -6.25×10-2

 0.0000000084 = 8.4×10-9
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どの数でも「×10n」の「10」の部分は同じ

小数を「D×10n」の形と考え、「D」と「n」だけ記憶しておく



浮動小数点方式[2](p. 10)

• 浮動小数点方式:

小数を「D×10n」と考え、「D」と「n」を記憶することで小数を表す方式
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Ex. 

D = 6.25, n = -3の場合: 0.00625

D = 6.25, n = -2の場合: 0.0625

D = 6.25, n = -1の場合: 0.625

D = 6.25, n = 0の場合: 6.25

 D: 仮数部
 n: 指数部
と呼ぶ

nの数値が何かで、小数点が仮数の中を動くように
見えるから「浮動小数点」と名づけられた



浮動小数点方式[4](p. 10)

• コンピュータでは、指数部は2の累乗
→小数を「D×2n」として考え、「D」と「n」を記憶
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Ex.

 0.5 = 1.0×(1/2) = 1.0×2-1

 -0.0625 = -1.0×(1/16) = 1.0×2-4



大きな数の表現(p. 10)

• 浮動小数点方式を利用して表現
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Ex.

 2000000000000 = 2×1012

 -425000000000000000 = -4.25×1017

指数部が「+」の数になる

コンピュータは「2」と「+12」, 「-4.25」と「+17」を記憶しておく
(実際には、「×10n」ではなく「×2n」で表現)



大きな数の表現[例](p. 10)

• Windowsの電卓のあるモード(オーバーフローをなかなかしないモード)で...
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Ex. 1000000000000000×1000000000000000

= 1.e+30

1.0×1030 という意味
(浮動小数点方式での表現)

※オーバーフローしにくいモードは、大きな数を浮動小数点方式で表現する
= それだけたくさんの桁がある数を表現できるので、オーバーフローしにくい



桁落ち(1)

• 小数部分が無限のものを扱えるわけではない
 例えば割り算で割り切れない数や円周率
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小数部分を適当なところで切り捨てる
(四捨五入ではない)

例えば...1÷3: コンピュータは「0.3333...333」と考える

本来はこの後も無限に続く

コンピュータが扱える小数の桁数:

「有効桁数」と呼ぶ



桁落ち(2)

• 小数部分が無限のものは適当なところまでで切り捨てられる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved.

本来の数よりも、小数の桁数が小さくなってしまう現象

桁落ち



桁落ちが起こると...

• 数が本来の数よりも小さくなってしまう
 微妙な数値が必要な場合には要注意

• 桁落ちをした数に大きな数をかけると、本来の数に大きな数を
かけたときとの差が大きくなる
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例えば...1÷3の結果が桁落ちし、0.333になるとすると

 0.333に100000をかけると33300

 1×100000を3で割ると(計算の順序を変えると)33333.333

 本来の1/3に100000をかけると、33333.333….

 コンピュータで計算をするときは、計算の順番に注意
(割り算はなるべく後にすること)

 例えば「1÷3×100000」の計算は、「1×100000」をしてから3で割る



桁落ち(補足)[1]

• 小数の桁が切り落とされたために、本来の数よりも小さくなってしまう現象
 Ex. 1÷7の計算

• 小数点第3位まで表現できるコンピュータ: 0.142

• 本来の(人間が手で計算した)計算結果: 0.142857142857...

• 小数が出てくる計算では、割り算の順序が重要
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コンピュータの結果では
この部分がなくなる

Ex. 1: ある試験の得点(96, 68, 76, 92, 70, 88)の平均点を、小数点第1位まで表現できる
コンピュータで計算

順序1(先に割り算): 96÷6 + 68÷6 + 76÷6 + 92÷6 + 70÷6 + 88÷6

順序2(後で割り算)(96 + 68 + 76 + 92 + 70 + 88)÷6

= 16 + 11.3 + 12.6 + 15.3 + 11.6 + 14.6 = 81.4

= 490÷6 = 81.6

桁落ちが発生する時点

割り算の順序によって計算結果が違う
(割り算を後にすると本来の計算結果により近い)



桁落ち[2]
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Ex. 2: あるショッピングセンターでの売り上げ予測
 ある月に13209人来て、289157341円売り上げがあった。このとき、1000000人来場したときの
売り上げ予測は? (小数点第1位まで表現できるコンピュータで計算)

普通に考えると...売り上げ÷実際の来場人数×1000000人

289157341÷13209×1000000

桁落ちが発生する時点

=21890.9×1000000 = 21890900000

割り算を後にすると...

289157341×1000000÷13209

桁落ちが発生する時点

=289157341000000÷13209 = 21890933530.1

割り算の順序によって、
計算結果が大きく違う

桁落ち後

桁落ち後



文字の表現
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文字の符号化(p. 13)

• 文字: コンピュータは整数に置き換えて扱う(番号をつけて扱う)

 文字を2進数で表現する(「符号化」と呼ぶ)

• 2進数で表現される文字集合

 半角英数文字

• 図形文字

• 制御文字

 多バイト文字

• 図形文字
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※文字集合: 文字の集まり



図形文字と制御文字(p. 13)

• 図形文字: 通常、画面に表示される文字

 人間が明示的に書いたり読んだりする文字

 アルファベット, 数字, ひらがな, 漢字, 記号, etc.

• 制御文字: 通常、画面に表示されない文字

 コンピュータに何らかの制御をするための文字

 改行, TAB, ESC, etc.
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ASCII文字
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ASCII文字(p. 13)

• ASCII: American Standard Code for Information Interchange

• 半角文字を表す文字集合
 アルファベット大文字(26文字)

 アルファベット小文字(26文字)

 数字(10文字)

 記号(スペース, 「,」, 「.」, etc.)
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1文字を表すために、最低限7ビット必要
(6ビット: 64種類の情報, 7ビット: 128種類の情報)

※1文字を表す2進数の桁数(ビット数)は、どの文字でも同じ(つまり7ビット)



図形文字(p. 13)

• ASCII: 情報量が7ビットで収まるように、扱う文字を取り決めた文字集合

 アルファベット(大文字・小文字): 52文字

 数字: 10文字

 記号(スペースを含む): 33文字
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図形文字: 合計95文字



番号例(p. 14)
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番号 文字 番号 文字 番号 文字

47 0 65 A 97 a

48 1 67 B 98 b

49 2 68 C 99 c

50 3 69 D 100 d

51 4 70 E 101 e

52 5 71 F 102 f

53 6 72 G 103 g

54 7 73 H 104 h

55 8 74 I 105 I

56 9 75 J 106 j

「数」としての0～9ではなく、「文字」としての0～9



番号の決まり(p. 14)

• 7ビットで1文字を表現 = 128文字表現可能

 図形文字: 95文字

• 32番～126番までが図形文字

 残り33文字: 制御文字を表現

• 0番～31番と127番が制御文字
※32番のスペースを、制御文字と考えることもある

• アルファベットの大文字と小文字の番号に規則
 小文字の番号は、大文字の番号に32(=(25)10=(100000)2)を足したもの

• Ex. A: (65)10 = (01000001)2, a: (97)10 = (01100001)2

 大文字⇔小文字の変換はやりやすい
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制御文字例(p. 14)

• BS(8番): Back Space

• HT(9番): TAB

• LF(10番): UNIX系OSでの改行

• CR(13番): Mac OSでの改行

• DEL(127番): Delete
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※OS: Operating System(オペレーティングシステム)

 Windowsでの改行は、13番と10番を組み合わせて「CRLF」の2つの
制御文字で表現される
 つまり、Windowsでは1つの改行が2文字分(2ビット)



ビット数[1](p. 14)

• コンピュータでは8ビットを1つの単位として扱うことが多い
→ ASCII文字も8ビットで表現すると扱いやすい

 8ビットのうち、7ビット分(2進数で7桁目まで)で文字を表現する

 残りビット(2進数で8桁目)に常に0を入れておく

• ASCII文字としては無駄なビット

• 日本語を表現するときに利用
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例えば...

A: 65番(10進数)

= 1000001番(2進数)

= 01000001番(2進数, コンピュータ内での表現)

ASCII的には無駄な(何も利用していない)ビット



ビット数[2](p. 14)

• 8ビットで1文字を表現 = 1バイトで1文字を表現
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「1バイト文字」と呼ばれる

Ex. 「Hello, my name is John.」
 アルファベット: 17文字
 記号: 2文字
 スペース: 4文字

23文字 = 23バイト



ちなみに...

• アスキーアートも文字コードのASCIIから(ASCII art)

 アスキーアート: 文字だけで作った絵

• 感情を表す「(^^);」のような単純なものから、人や動物に見えるものまで様々

• アスキーアートの例
 http://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%B9%E3%82%AD

%E3%83%BC%E3%82%A2%E3%83%BC%E3%83%88

 http://bhdaa.sakura.ne.jp/zukan/
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http://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%B9%E3%82%AD%E3%83%BC%E3%82%A2%E3%83%BC%E3%83%88
http://bhdaa.sakura.ne.jp/zukan/


多バイト文字
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背景[1](p. 15)

• コンピュータは主にアメリカで作られ発展
 使う人も、専門家だけだった

 当初は扱う文字はアルファベット・数字・いくつかの記号でよかった

• コンピュータが全世界に普及
 使う人も、専門家だけではなくなった

 英語圏以外の言語圏に対応する必要が出てきた

• 様々な言語圏の文字に対応
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背景[2](p. 15)

• 様々な言語圏の文字: 英語圏の文字と同様に2進数で表現する必要性

 英語圏の文字: 128文字で表現可能

• 1バイト分(256文字分)のうち、128文字分は英語圏の文字

 英語圏以外の文字: 128文字以上必要な場合も

• 日本語

• 中国語

• 韓国語

• etc.
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128文字では収まらない

1文字を複数のバイト(多バイト)で表現



文字化け(p. 15)

• 多バイト文字の出現により、文字化けが発生

• 文字化けの原因
 フォントの問題

 文字集合の符号化方式の問題
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「文字コード」と呼ぶ

詳細な理由は何であれ...

要は文字を表す2進数(0と1の並び)を、コンピュータが理解して
いないために発生

 その2進数をどのような形でディスプレイに表示して良いかを
コンピュータが理解していないため



フォントの問題[3](p. 15)

• 機種依存文字: コンピュータによって表現のしかたが違う文字

 それぞれの文字を表現するビット列が、コンピュータによって異なる

• 1文字1文字を表現するビット列は、JIS(日本の国家規格)などで決まっている
→ コンピュータの環境に依存しない

• 規格で決められた文字に含まれていない文字もある

• Ex. 丸付き数字(①, ②, …)、ローマ数字(Ⅰ, Ⅱ, …), etc.

• 外字: 登録されていない文字を、利用者が作ったもの

 人名漢字などを作ることが多い

 作ったコンピュータでしか使えない
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機種依存文字



符号化方式の問題[1](p. 15)

• 符号化: 1つの文字を2進数(ビット列)として表現すること

• ある1つの文字を表現するビット列が複数通り存在する場合

 半角英数の文字はASCIIの1通りだけ

• 他にも存在するが、ASCIIが世界標準

• 大部分のコンピュータはASCIIを利用

 日本語は複数通り存在
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符号化方式の問題[2](p. 15)

• ある文書で使われている符号化方式をコンピュータが判別できないときに
文字化け

 判別できなければ、コンピュータが普段使っている符号化方式で表示しようと
することが多い
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Ex. Windowsで文書を開いた場合
 文書はJISで書いてあり、WindowsはJISであると判別できなかった
 WindowsはShift JISとして開こうとする
 文書は文字化けして表示される

※ソフトウェアによっても、符号化方式を判別できるものとできないものがある
(Ex. Windowsのメモ帳は、JISなどは判別できない)



日本語の符号化方式
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日本語の文字(p. 15)

• 日本語固有の文字
 ひらがな

 カタカナ

 漢字

 かぎカッコ

 句読点

 etc.
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日本語の文字(p. 15)

• ASCII

 1文字を8ビットで表現→全部で256文字分表現可能

 現状で128文字存在(128文字分利用されている)

• 日本語
 ひらがな: あ～ん(ゐ, ゑなどの旧字を含む), 濁音・半濁音, 

小文字(「ぁ」, 「ぃ」など)

 カタカナ: ア～ン(ヰ, ヱなどの旧字を含む), 濁音・半濁音(ヴを含む), 

小文字(「ァ」, 「ィ」, 「ヵ」, 「ヶ」など)
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169文字

ひらがな・カタカナだけでもASCIIでは表現できない



日本語文字集合の規格(p. 16)

• 現状での日本語文字集合の規格: JIS X 0208:1997

 ひらがな・カタカナ・漢字・非漢字文字で6879個
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16ビット(2バイト)で日本語1文字を表現

JIS第1水準(使用頻度の高い漢字): 2965個
JIS第2水準(使用頻度の低い漢字): 3390個

213 = 8192なので、13ビットで表現可能
コンピュータ処理では、バイト単位(8ビット単位)が好都合



ASCII文字との区別(p. 16)

• 日本語の文書
 日本語の2バイト文字

 ASCIIの1バイト文字
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混在

日本語の2バイト文字(JIS X 0208)とASCIIの1バイト文字は区別する必要
(1つの文書の中で、どれが2バイト文字でどれが1バイト文字か)

モード切り替えによる区別方法
ASCII文字の番号を避ける区別方法



モード切り替え(p. 16)

• 文字集合切り替えのための特別な記号を用意
 ここから先はASCII文字

 ここから先は日本語文字

 ここから先は中国語漢字

 etc.
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エスケープシーケンス

通常の文書では頻繁に文字集合が切り替わることがなく、同じ文字集合に属する文字が
現れることが多いという性質を利用

 国際標準規格: ISO-2022

 日本語に適用したもの: ISO-2022-JP



ISO-2022-JPの例(p. 16)
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ESC $B F| K¥ $N ESC (B JP ESC $B $@ !# ESC (B ¥n

日 本 は JP だ 。

 「ESC $B」や「ESC (B」、「¥n」などがエスケープシーケンス
 「F|」や「K¥」、「$N」などは、2バイト文字をASCII文字で表現した場合の文字

(2バイト文字は、1バイト文字2文字の組み合わせで表現できる)

 エスケープシーケンス「ESC $B」や「ESC(B」は、3バイトずつ
 「¥n」は改行を表し、半角文字の扱いなので、改行の前に2バイト文字がある場合は、
改行と2バイト文字との間にもエスケープシーケンス

 文章の開始(終了)が1バイト文字の場合は、文章の先頭(終了)にエスケープシーケンスはなし
 文章の開始が2バイト文字の場合は、文章の先頭にエスケープシーケンスあり



モード切り替えの考え方[1](p. 16)

• 同じ文字集合に属する文字が現れることが多い
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6 月 1 日

コンピュータサイエンス 1 の授業

半角の文字 日本語の文字

 上側の文章: 日本語文字がいくつか続いた後、半角文字が少しあり、また日本語文字が続く
 下側の文章: 日本語文字と半角の文字が交互にある



モード切り替えの考え方[2](p. 16)

• 普通の日本語の文章は、日本語の文字がずっと続き、たまに
半角文字が出てくるということが多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved.

頻繁に文字集合が切り替わるわけではない(ある言語と別の言語の文字が1文字ずつ
交互に出てきたり、ということは少ない)

→文字集合がどこで切り替わっているか、わかるようにしておけば良い

ある言語の文章では、その言語の文字がずっと続き、別の言語の文字はところどころに出てくる



モード切り替えの考え方[6](p. 16)

• 日本語文字: 1文字2バイト

• ASCII文字: 1文字1バイト

 改行はASCII文字扱い

• Mac OSやUNIX系OSだとASCII文字1文字分 = 1バイト

• WindowsだとASCII文字2文字分 = 2バイト

• エスケープシーケンス: 1つ3バイト
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 日本語文字: 6文字 = 12バイト
 ASCII文字: 4文字 = 4バイト
 エスケープシーケンス: 3個 = 9バイト

25バイト

東女はTWCUです。

※この文章は改行なしとする



モード切り替えの問題(p. 17)

• 文書を先頭から順番に見ていく場合には問題ない

• 文書を途中から見ていくときに問題が生じる
 見始めた途中の文字が、ASCII文字か日本語文字か、エスケープシーケンスかが
判別できない
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Ex. 見始めた途中の文字が「70」番だった場合
 ASCII文字の「F」?

 日本語文字の一部?

 韓国語の一部?

検索や置換などの文書処理に時間がかかる



ASCII文字の番号を避ける(p. 17)

• ASCIIで使われていない番号を2バイト文字の番号にあてる方法

 EUC(日本語のものをEUC-JP)

• 第1バイト(前半の8ビット)と第2バイト(後半の8ビット)両方でASCII領域が避けられている

 SJIS(Shift JIS)

• 第2バイト(後半の8ビット)ではASCII領域も使われている

 文章のバイト数は、単純に、日本語文字で2バイト、ASCII文字で1バイトで
数えれば良い
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EUCとSJIS[1](p. 17)

• ASCII文字: 8個の0と1で、1文字分を表現

 実際には、7個の0と1で1文字分を表現

 8ビット目は必ず0
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XXXXXXXX

0000000から1111111まで、フルに使っ
てASCII文字を1文字ずつ表現必ず0

= ASCII文字は、0XXXXXXX という形
Ex. 「a」を0と1で表現すると: 01100001

8ビット目が1になる番号(1XXXXXXXという形の番号)は
ASCII文字ではない



EUCとSJIS[2](p. 17)

• ASCIIで使われていない番号を2バイト文字の番号にあてる方法

 EUC(日本語のものをEUC-JP)

• 第1バイト(前半の8ビット)と第2バイト(後半の8ビット)両方でASCII領域が避けられている

 SJIS(Shift JIS)

• 第2バイト(後半の8ビット)ではASCII領域も使われている

 文章のバイト数は、単純に、日本語文字で2バイト、ASCII文字で1バイトで
数えれば良い
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00110110100101101010010101101010
例えばある文章が...

0から始まっているからASCII文字

1から始まっているから日本語文字



Webやメールでの文字化け(p. 18)

• Webページや電子メール

 文字コードの指示が文書中に書かれている場合

 文字コードの指示が文書中に書かれていない場合
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「charset=iso-2022-jp」や「charset=Shift_JIS」など

ソフトウェアは指示通りに文字コードを解釈し、表示

ソフトウェアは文書のデータの特徴から文字コードを判別

文字化けが発生する場合
文書中の文字コードの指示が間違っている場合
文字コードの指示がなく、文字コードを判別できなかった場合



Unicode
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言語圏ごとの文字コード(p. 18)

• これまでの多バイト文字の扱い:

異なる言語圏ごとに文字集合を作成
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様々な文字集合ができてしまって不便
コンピュータネットワークの国際化が進んだ
コンピュータの資源が豊富になった

国際文字集合規格として各文字集合を統一化



統一文字コード(p. 18)

• Unicode

 ASCII

 ラテン文字

 日本語

 韓国語

 中国語

 ベトナム語

 ギリシャ文字

 記号

 etc.
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Unicodeバージョン5.2.0で
107361文字



UTF-8(p. 18)

• Unicodeでの代表的な符号化方式

• 1文字を1～6バイトの可変長(文字によってバイト数が異なる)で
符号化する方式

 ASCIIやISO-2022-JP、Shift JIS、EUC-JPは1文字を全て同じバイト数で
表現している

• OS(WindowsやMacなどのオペレーティングシステム)でファイル名などの
内部処理に利用

 半角英数を符号化した結果が、ASCII文字と全く同じになるため、従来の
システムと相性が良い
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現在、Unicodeへの移行が急速に進んでいる
 ただし、以前から使われてきたファイルを移行するのは大変なので、
完全移行には時間がかかる


