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第7回
コンピュータでの情報の扱い(4)

人間科学科コミュニケーション専攻

白銀純子
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第7回の内容
コンピュータでの情報の扱い方(4)
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前回の復習 負の数の表現[1](p. 9)

コンピュータでの計算は、全て足し算

コンピュータでの計算は、電気回路で実行
電気回路: 電気が通る線を組み合わせて、様々な処理をするためのもの

(コンピュータを構成する最も基本的な部品)

足し算, 引き算, かけ算, 割り算をするには、それぞれのために専用の回路が必要

足し算専用回路, 引き算専用回路, かけ算専用回路, 割り算専用回路
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経済的に良くない

足し算専用回路(加算器)を
組み合わせて他の計算をカバー

負の数の表現[2](p. 9)

足し算の組み合わせで他の計算も行う

引き算: 「a-b」を、「a+(-b)」(bを負数と考える)

かけ算: 足し算の繰り返しとして計算

割り算: 引き算の繰り返しとして計算
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コンピュータでも負数を扱う
方法1: 真数表現
方法2: 2の補数表現

真数表現(p. 9)

数を表す2進数に符号(+ or -)を表す1ビットを付加

数の先頭のビットで符号を表す

0が「+」, 1が「-」を表す
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「符号ビット」と呼ぶ

10進数 2進数

-3 1 0 1 1

-2 1 0 1 0

-1 1 0 0 1

-0 1 0 0 0

+0 0 0 0 0

+1 0 0 0 1

+2 0 0 1 0

+3 0 0 1 1

符号ビット

具合が悪いので
真数表現はあまり使われない

数を表す部分

0が「+0」と「-0」の
2種類できてしまう
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2の補数表現[1](p. 9)

負の数Nを、正の数N(2進数)の0と1を反転させて1を加えた数で
表現する方法

0と正の整数(自然数)は、そのまま表現(この計算はしない)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

Ex.

(-10)10

= (-01010)2

→ ( 10101  +  1)2 = (10110)2

「10」を2進数にして
「-」をつけたもの

「-01010」の「-」をとって
「1」と「0」を逆にしたもの

(-10)10の2進数
(2の補数表現)

2の補数表現[2](p. 9)

 2の補数 = 負の数を2進数で表現したもの(コンピュータの世界では)

 計算方法(例: -20を10桁の2進数に直す)

1. 2の補数に直したい10進数のマイナスを取り除く
 (-20)10→ (20)10

2. 1. の結果を2進数に直す
 (20)10 = (0000010100)2

3. 2. の結果の0と1を逆にする(0の桁を1、1の桁を0にする)
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0  0  0  0  0  1  0  1  0  0

1  1  1  1  1  0  1  0  1  1

2の補数表現[2](p. 9)

 2の補数 = 負の数を2進数で表現したもの(コンピュータの世界では)

 計算方法(例: -20を10桁の2進数に直す)

4. 3. の結果に1を足し算する
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1111101011
1+

1111101100

-20を2進数に直した結果
(2の補数 = 2進数での負の数の表現)

2進数での負の数の表現では、
「-」の記号はつけない

2の補数表現の利点(p. 10)

引き算(符号付きの足し算)をそのまま足し算として処理できる
(自然数と同様に処理できる)
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Ex.

(10 + 3)10 = (01010 + 00011)2 = (01101)2

(-6 + 3)10 = (11010 + 00011)2 = (11101)2

真数表現: 符号付きの足し算を処理するには、別の回路が必要
(単純に足すことはできない)

2の補数を10進数に変換[1]

2の補数から1を引き、0と1を反転させて10進数になおして「-」をつける

負の数を2の補数に変換するときの逆

この計算は、負の数だけ
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Ex.

(110110)2

→ (110110 - 1)2 = (110101)2

→ (-001010)2

=  (-10)10

2の補数から1を
引いたもの

「110101」の0と1を
逆にしたもの(110110)2(2の

補数)の10進数

2の補数を10進数に変換[2]

計算方法(例: 1111101100を10進数に直す)

1. 2の補数から1を引き算する

2. 1. の結果の0と1を逆にする(0の桁を1、1の桁を0にする)
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※2の補数→10進数の方法は、10進数→2の補数の逆

1111101100
1-

1111101011

1111101011

0000010100
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2の補数を10進数に変換[2]

計算方法(例: 1111101100を10進数に直す)

1. 2. の結果を10進数に直す

(0000010100)2 = (20)10

2. 3. の結果に-(マイナス)をつける

(20)10→ (-20)10
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1111101100を
10進数に直した数

※2の補数→10進数の方法は、10進数→2の補数の逆

2進数の引き算[1]

10進数の引き算だと...

ある桁の引かれる数が引く数より小さければ、1つ大きな桁から10を借りる

10を借りる: 貸した桁から1を引き、借りた桁に10を足す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

1  0  0

1-

10を借りる

0   10 0

1-

10を借りる

0    9   10

1-

0     9    9

引き算の答え: 99

2進数の引き算[2]

2進数の引き算だと...

ある桁の引かれる数が引く数より小さければ、1つ大きな桁から
(10)2(10進数で2)を借りる
2を借りる: 貸した桁から1を引き、借りた桁に2を足す
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1  0  0

0  0  1-

2(2進数で10)を借りる

0   2 0

0   0   1-

2(2進数で10)を借りる

0    1   2

0    0   1-

0 1   1

引き算の答え: 011

※コンピュータ的には引き算はしないので、人間が2の補数→10進数の計算をするための引き算

正の数と負の数の見分け方[1]

大前提: 数を表す2進数の桁数は決まっている

普通のコンピュータで32桁(or 64桁)
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ということは…例えば(10)10は、コンピュータ的には…

0000….00001010

と考えている

※授業のスライド中では32桁分も書けないので、そのときどきで適当なところで割愛

28個の「0」

正の数と負の数の見分け方[2]

負の数(2の補数)の計算方法: 負の数Nを、正の数N(2進数)の0と1を
反転させて1を加える
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コンピュータ的には32桁で数を表すので…

(-10)10→ (10)10

= (0000…00001010)2

→ (1111…11110101  +  1)2 = (1111…11110110)2

28個の「0」も全て「1」に反
転される

負の数は結果的に一番大きな桁(一番左の桁)が「1」になる

一番大きな桁(一番左の桁)が「0」であれば正の数、「1」であれば負の数として扱う

111100001111

101010101000001111111100

正の数と負の数の見分け方[3]

2進数を見たときに...(2の補数を考える場合)

「2の補数を考える」という場合は、先頭の桁を見て、正の数か負の数かを判断

「2の補数を考える」と書かれていない場合は、負の数を考えなくてOK
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2進数の数

0101010101

「0」で始まっているので、
正の数

「1」で始まっているので、
負の数
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正の数と負の数の見分け方[3]

2進数で表された数は、一番大きな桁(一番左の桁)が「0」であれば
正の数、「1」であれば負の数

10進数で表された数は、普通に正の数、負の数として計算

正の数であれば、割り算だけで2進数に変換
Ex. 「+5」と書かれていれば、割り算だけで2進数に変換

負の数であれば、2の補数の方法で2進数に変換
Ex. 「-5」と書かれていれば、2の補数の方法で2進数に変換

ただし、足し算や引き算をした結果を、2の補数を含めて計算すること

計算の結果、一番大きな桁が「0」であれば正の数

計算の結果、一番大きな桁が「1」であれば負の数
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桁あふれ(オーバーフロー)(p. 11)

2の補数に関係した桁あふれ(オーバーフロー)が起こりうる
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0 1 10

0  1  1  1  0
0  0  1  0  1+

1

Ex. 2進数5桁の計算(10進数で14+5の計算)

先頭の桁が1になってしまった

先頭の桁が1の場合は、2進数で負の数として扱う

計算結果: (-13)10(負の数)
2の補数に関係した

桁あふれ(オーバーフロー)

1 0  0  1  1

負の数を表す

桁あふれ[まとめ][1]

桁あふれの分類(その1)

足し算等の何らかの計算の結果、コンピュータが扱うことのできる数の桁数の
限界を超えてしまう場合
Ex. 4桁の数「0110+0110+0110」の計算
→本来の計算結果は「10010」で5桁になってしまうので、5桁目が無視されてコンピュータが
出す結果は「0010」
→コンピュータが出す結果と本来の結果が違うことになる現象
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※人間やコンピュータがミスをした、という現象ではない

ある意味、コンピュータの性能の限界を超えてしまうということで、
その結果として、本来の計算結果とは違う結果がでる現象

桁あふれ[まとめ][2]

桁あふれの分類(その2)

足し算等の何らかの計算の結果、数の正と負が違ってしまう場合
Ex. 4桁の数「0110+0110」の計算
→本来の計算結果は「1100」で、1桁目が1なので、コンピュータは計算結果を
負の数(-4)として取り扱い
→本来の計算結果は正の数(12)

→コンピュータが出す結果と本来の結果が違うことになる現象
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本来の計算結果は正(負)の数なのに、計算結果が
負(正)の数になってしまう現象

※人間やコンピュータがミスをした、という現象ではない

桁あふれ[まとめ][3]

どのような数を計算に使っても、計算結果を見て...

1. 計算結果が決められた桁数を超えていれば、超えた分の桁の数を削除

2. 計算結果の先頭の桁が0か1かで、正か負を判断

正の数(先頭の桁が0)であれば、普通に10進数に直す

負の数(先頭の桁が1)であれば、2の補数の方法で10進数に直す
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4桁の2進数の計算結果: (100110)2

桁数を超えた部分= 削除

計算結果: (0110)2

4桁の2進数の計算結果: (0101)2

4桁の2進数の計算結果: (1010)2

正の数と判断

計算結果: (5)10

負の数と判断

計算結果: (-6)10

やってみよう!

 (+10)+(+8)を5桁の2の補数として計算し、
10進数として表現

 (-10)+(+8)を5桁の2の補数として計算し、
10進数として表現
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桁あふれも考慮すること
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小数の表現方法
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整数以外の数を表現するには?

コンピュータが表現できる数: 整数, 小数

整数以外の数

小数

分数

n乗根(平方根, 立方根, etc)

π(円周率)

etc.
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全て小数として表現

2進数の小数を10進数に直す[1]

1. 10進数の整数部分は、通常の方法で2進数に直す

2. 10進数の小数部分に2をかけ算する

3. 2. の結果、整数部分を小数点第1桁にする

4. 3. の結果、小数部分をまた10進数の数とする
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 小数部分が0になるまで繰り返す
 無限小数になることも(10進数できりのいい数も2進数では無限小数になりえる)

 2. の整数部分を小数点第2桁、第3桁、...と置いていく
 1. の整数部分と2. の整数部分を並べたものが2進数での小数になる

2進数の小数を10進数に直す[2]

10進数の小数を2進数に直すには?(例1)

10進数の0.8125を2進数に直す
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1.625

0.8125

2×

1.25

0.625

2×

0.5

0.25

2×

1.0

0.5

2×

0. 1 1 0 1 0になったので計算終了

(0.8125)10 = (0.1101)2

2進数の小数を10進数に直す[3]

10進数の小数部分を2進数に直すには?(例2)

10進数の3.8を2進数に直す(整数部分の3は2進数で11)
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1.6

0.8

2×

1.2

0.6

2×

0.4

0.2

2×

0.8

0.4

2×

0. 1 1 0 0 0.8になって最初に戻ったので、
無限小数

(3.8)10 = (11.110011001100....)2

10進数の小数を2進数に直す[1]

例: 101.1101 (整数部分101は10進数で5)

1. 2進数の整数部分は、通常の方法で10進数に直す

2. 10進数の小数部分各桁の上に「1/2」を書く

3. 2. で書いた「1/2」の「2」の右肩に左から1, 2, 3, ...と書いていく

1/20, 1/21, 1/22, ...ができていく
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2.

0  .  1    1   0    1

左から右に、1, 2, 3, ...と番号をつける

2

1

2

1

2

1

2

1 3.

2

1

2

1

2

1

2

1

0  .  1    1   0    1

4321
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10進数の小数を2進数に直す[2]

4. 各桁の上の「1/2n」と、それぞれの桁の数をかけあわせる

5. 4. の結果を足し合わせ、1. の整数部分とあわせる
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3.

21

1

22

1

23

1

24

1

0  .  1    1   0    1

4.

21

1

22

1

23

1

24

1

0  .  1    1   0    1
××××

=

1

21

1

22 0
1

24

5.
1

21

1

22 0
1

24

足し合わせる
=

0.5 + 0.25 + 0.0625 = 0.8125

5.8125

1. の整数部分とあわせる

小数の表現方式
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小数を表現する方法(p. 10)

固定小数点方式

浮動小数点方式
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固定小数点方式[1](p. 10)

小数部分の桁数をあらかじめ決めておく方法
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Ex. 2進数で表現した数の右から2ビットを小数部分とする場合
10進数の小数 2進数の小数

0.00 00 00

0.25 00 01

0.50 00 10

0.75 00 11

1.00 10 00

1.25 10 01

1.50 10 10

… …

3.75 11 11

小数部分は1/22刻み(0.25刻み)で表現

固定小数点方式[2](p. 10)

小数部分の桁数がnの場合: 2進数では、小数部分が1/2n刻みで表現
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nを大きくすると、それだけ小数部分を細かく表現可能

※ただし、実際コンピュータは小数も2進数で考えているが、人間が考えるときの便宜上、
10進数で考えることが多い

固定小数点方式[3](p. 10)

小数を表す桁数が決まっていると…
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Ex. 右から2桁を小数部分とすると…

(2 ÷ 1000)10 = (0.002)10→(0.00)10

小数を正確に表現できない

何桁分の小数部分を持っているかは数値によって異なる
=固定小数点方式で小数を表せる場合は少ない

浮動小数点方式
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浮動小数点方式[1](p. 10)

小数: D × 10nと表現できる

Ex. 

0.5 = 5×10-1

-0.0625 = -6.25×10-2

0.0000000084 = 8.4×10-9
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どの数でも「×10n」の「10」の部分は同じ

小数を「D×10n」の形と考え、「D」と「n」だけ記憶しておく

浮動小数点方式[2](p. 10)

浮動小数点方式:

小数を「D×10n」と考え、「D」と「n」を記憶することで小数を表す方式
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Ex. 

D = 6.25, n = -3の場合: 0.00625

D = 6.25, n = -2の場合: 0.0625

D = 6.25, n = -1の場合: 0.625

D = 6.25, n = 0の場合: 6.25

 D: 仮数部
 n: 指数部
と呼ぶ

nの数値が何かで、小数点が仮数の中を動くように
見えるから「浮動小数点」と名づけられた

浮動小数点方式[3](p. 10)

仮数部

符号は「0」が「+」、「1」が「-」

固定小数点方式

指数部

符号は「0」が「+」、「1」が「-」(ただし、2の補数表現とは別の特殊な形で
表現される)
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浮動小数点方式[4](p. 10)

コンピュータでは、指数部は2の累乗
→小数を「D×2n」として考え、「D」と「n」を記憶
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Ex.

 0.5 = 1.0×(1/2) = 1.0×2-1

 -0.0625 = -1.0×(1/16) = 1.0×2-4

大きな数の表現(p. 10)

浮動小数点方式を利用して表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

Ex.

 2000000000000 = 2×1012

 -425000000000000000 = -4.25×1017

指数部が「+」の数になる

コンピュータは「2」と「+12」, 「-4.25」と「+17」を記憶しておく
(実際には、「×10n」ではなく「×2n」で表現)

大きな数の表現[例](p. 10)

Windowsの電卓のあるモード(オーバーフローをなかなかしないモード)で...

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

Ex. 1000000000000000×1000000000000000

= 1.e+30

1.0×1030 という意味
(浮動小数点方式での表現)

※オーバーフローしにくいモードは、大きな数を浮動小数点方式で表現する
= それだけたくさんの桁がある数を表現できるので、オーバーフローしにくい
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桁落ち(1)

小数部分が無限のものを扱えるわけではない

例えば割り算で割り切れない数や円周率

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 43

小数部分を適当なところで切り捨てる
(四捨五入ではない)

例えば...1÷3: コンピュータは「0.3333...333」と考える

本来はこの後も無限に続く

コンピュータが扱える小数の桁数:

「有効桁数」と呼ぶ

桁落ち(2)

小数部分が無限のものは適当なところまでで切り捨てられる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 44

本来の数よりも、小数の桁数が小さくなってしまう現象

桁落ち

桁落ちの例
Windowsの電卓のあるモード(オーバーフローをなかなかしないモード)で...

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 45

Ex. 電卓での計算: 9999999999999999×9999999999999999 

= 9.999999999999998e+31 = 9.999999999999998×1031

9999999999999999
9999999999999999×

...91

...91

...01

+

つまり本当の計算では...

9999999999999999×9999999999999999

= x.xxxx...01

桁落ち

桁落ちが起こると...

数が本来の数よりも小さくなってしまう

微妙な数値が必要な場合には要注意

桁落ちをした数に大きな数をかけると、本来の数に大きな数を
かけたときとの差が大きくなる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 46

例えば...1÷3の結果が桁落ちし、0.333になるとすると

 0.333に100000をかけると33300

 1×100000を3で割ると(計算の順序を変えると)33333.333

 本来の1/3に100000をかけると、33333.333….

 コンピュータで計算をするときは、計算の順番に注意
(割り算はなるべく後にすること)

 例えば「1÷3×100000」の計算は、「1×100000」をしてから3で割る

やってみよう![1]

2進数1.101を10進数に変換
(2010年度ITパスポート春季試験問題)

2進数に変換した時、有限小数で表現できる10進数は、
以下のうちどれか

0.1

0.2

0.4

0.5

(2012年度ITパスポート秋季試験問題)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 47

やってみよう![2]

0.0000055を浮動小数点方式で表現

0.000000001234を浮動小数点方式で表現

456000000000000を浮動小数点方式で表現
※3つとも仮数部は小数点第2位の小数とすること

 (10÷7)×10000を計算

小数点第2位までが有効桁数

桁落ちを考えて計算すること

10÷7×10000を計算

小数点第2位までが有効桁数

桁落ちの影響がなるべく少ないように計算すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 48
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文字の表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 49

文字の符号化(p. 13)

文字: コンピュータは整数に置き換えて扱う(番号をつけて扱う)

文字を2進数で表現する(「符号化」と呼ぶ)

2進数で表現される文字集合

半角英数文字

図形文字

制御文字

多バイト文字

図形文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 50

※文字集合: 文字の集まり

図形文字と制御文字(p. 13)

図形文字: 通常、画面に表示される文字

人間が明示的に書いたり読んだりする文字

アルファベット, 数字, ひらがな, 漢字, 記号, etc.

制御文字: 通常、画面に表示されない文字

コンピュータに何らかの制御をするための文字

改行, TAB, ESC, etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 51

ASCII文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 52

ASCII文字(p. 13)
ASCII: American Standard Code for Information Interchange

半角文字を表す文字集合

アルファベット大文字(26文字)

アルファベット小文字(26文字)

数字(10文字)

記号(スペース, 「,」, 「.」, etc.)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 53

1文字を表すために、最低限7ビット必要
(6ビット: 64種類の情報, 7ビット: 128種類の情報)

※1文字を表す2進数の桁数(ビット数)は、どの文字でも同じ(つまり7ビット)

図形文字(p. 13)

ASCII: 情報量が7ビットで収まるように、扱う文字を取り決めた文字集合

アルファベット(大文字・小文字): 52文字

数字: 10文字

記号(スペースを含む): 33文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 54

図形文字: 合計95文字
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番号例(p. 14)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 55

番号 文字 番号 文字 番号 文字

47 0 65 A 97 a

48 1 67 B 98 b

49 2 68 C 99 c

50 3 69 D 100 d

51 4 70 E 101 e

52 5 71 F 102 f

53 6 72 G 103 g

54 7 73 H 104 h

55 8 74 I 105 I

56 9 75 J 106 j

「数」としての0～9ではなく、「文字」としての0～9

番号の決まり(p. 14)

7ビットで1文字を表現 = 128文字表現可能

図形文字: 95文字

32番～126番までが図形文字

残り33文字: 制御文字を表現

0番～31番と127番が制御文字
※32番のスペースを、制御文字と考えることもある

アルファベットの大文字と小文字の番号に規則

小文字の番号は、大文字の番号に32(=(25)10=(100000)2)を足したもの

Ex. A: (65)10 = (01000001)2, a: (97)10 = (01100001)2

大文字⇔小文字の変換はやりやすい

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 56

制御文字例(p. 14)

BS(8番): Back Space

HT(9番): TAB

LF(10番): UNIX系OSでの改行

CR(13番): Mac OSでの改行

DEL(127番): Delete

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 57

※OS: Operating System(オペレーティングシステム)

 Windowsでの改行は、13番と10番を組み合わせて「CRLF」の2つの
制御文字で表現される
 つまり、Windowsでは1つの改行が2文字分(2ビット)

ビット数[1](p. 14)

コンピュータでは8ビットを1つの単位として扱うことが多い
→ ASCII文字も8ビットで表現すると扱いやすい

8ビットのうち、7ビット分(2進数で7桁目まで)で文字を表現する

残りビット(2進数で8桁目)に常に0を入れておく

ASCII文字としては無駄なビット

日本語を表現するときに利用

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 58

例えば...

A: 65番(10進数)

= 1000001番(2進数)

= 01000001番(2進数, コンピュータ内での表現)

ASCII的には無駄な(何も利用していない)ビット

ビット数[2](p. 14)

8ビットで1文字を表現 = 1バイトで1文字を表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 59

「1バイト文字」と呼ばれる

Ex. 「Hello, my name is John.」
 アルファベット: 17文字
 記号: 2文字
 スペース: 4文字

23文字 = 23バイト

やってみよう!

半角英数字の文章のバイト数を考えてみよう!

Mac OSだと?

Windowsだと?

UNIX系OSだと?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 60

Hello, everybody!

Welcome to Tokyo Woman's Christian University!

それぞれ、何バイト?

※「Hello, everybody!」の後に改行が1つ、その他に改行はなし
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多バイト文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 61

背景[1](p. 15)

コンピュータは主にアメリカで作られ発展

使う人も、専門家だけだった

当初は扱う文字はアルファベット・数字・いくつかの記号でよかった

コンピュータが全世界に普及

使う人も、専門家だけではなくなった

英語圏以外の言語圏に対応する必要が出てきた
様々な言語圏の文字に対応

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 62

背景[2](p. 15)

様々な言語圏の文字: 英語圏の文字と同様に2進数で表現する必要性

英語圏の文字: 128文字で表現可能
1バイト分(256文字分)のうち、128文字分は英語圏の文字

英語圏以外の文字: 128文字以上必要な場合も

日本語

中国語

韓国語

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 63

128文字では収まらない

1文字を複数のバイト(多バイト)で表現

文字化け(p. 15)

多バイト文字の出現により、文字化けが発生

文字化けの原因

フォントの問題

文字集合の符号化方式の問題

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 64

「文字コード」と呼ぶ

詳細な理由は何であれ...

要は文字を表す2進数(0と1の並び)を、コンピュータが理解して
いないために発生

 その2進数をどのような形でディスプレイに表示して良いかを
コンピュータが理解していないため

フォントの問題[3](p. 15)

機種依存文字: コンピュータによって表現のしかたが違う文字

それぞれの文字を表現するビット列が、コンピュータによって異なる

1文字1文字を表現するビット列は、JIS(日本の国家規格)などで決まっている
→ コンピュータの環境に依存しない

規格で決められた文字に含まれていない文字もある

Ex. 丸付き数字(①, ②, …)、ローマ数字(Ⅰ, Ⅱ, …), etc.

外字: 登録されていない文字を、利用者が作ったもの

人名漢字などを作ることが多い

作ったコンピュータでしか使えない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 65

機種依存文字

符号化方式の問題[1](p. 15)

符号化: 1つの文字を2進数(ビット列)として表現すること

ある1つの文字を表現するビット列が複数通り存在する場合

半角英数の文字はASCIIの1通りだけ
他にも存在するが、ASCIIが世界標準

大部分のコンピュータはASCIIを利用

日本語は複数通り存在

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 66
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符号化方式の問題[2](p. 15)

ある文書で使われている符号化方式をコンピュータが判別できないときに
文字化け

判別できなければ、コンピュータが普段使っている符号化方式で表示しようと
することが多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 67

Ex. Windowsで文書を開いた場合
文書はJISで書いてあり、WindowsはJISであると判別できなかった
WindowsはShift JISとして開こうとする
文書は文字化けして表示される

※ソフトウェアによっても、符号化方式を判別できるものとできないものがある
(Ex. Windowsのメモ帳は、JISなどは判別できない)

日本語の符号化方式

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 68

日本語の文字(p. 15)

日本語固有の文字

ひらがな

カタカナ

漢字

かぎカッコ

句読点

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 69

日本語の文字(p. 15)
ASCII

1文字を8ビットで表現→全部で256文字分表現可能

現状で128文字存在(128文字分利用されている)

日本語

ひらがな: あ～ん(ゐ, ゑなどの旧字を含む), 濁音・半濁音, 

小文字(「ぁ」, 「ぃ」など)

カタカナ: ア～ン(ヰ, ヱなどの旧字を含む), 濁音・半濁音(ヴを含む), 

小文字(「ァ」, 「ィ」, 「ヵ」, 「ヶ」など)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 70

169文字

ひらがな・カタカナだけでもASCIIでは表現できない

日本語文字集合の規格(p. 16)

現状での日本語文字集合の規格: JIS X 0208:1997

ひらがな・カタカナ・漢字・非漢字文字で6879個

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 71

16ビット(2バイト)で日本語1文字を表現

JIS第1水準(使用頻度の高い漢字): 2965個
JIS第2水準(使用頻度の低い漢字): 3390個

213 = 8192なので、13ビットで表現可能
コンピュータ処理では、バイト単位(8ビット単位)が好都合

ASCII文字との区別(p. 16)

日本語の文書

日本語の2バイト文字

ASCIIの1バイト文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 72

混在

日本語の2バイト文字(JIS X 0208)とASCIIの1バイト文字は区別する必要
(1つの文書の中で、どれが2バイト文字でどれが1バイト文字か)

モード切り替えによる区別方法
ASCII文字の番号を避ける区別方法
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モード切り替え(p. 16)

文字集合切り替えのための特別な記号を用意

ここから先はASCII文字

ここから先は日本語文字

ここから先は中国語漢字

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 73

エスケープシーケンス

通常の文書では頻繁に文字集合が切り替わることがなく、同じ文字集合に属する文字が
現れることが多いという性質を利用

 国際標準規格: ISO-2022

 日本語に適用したもの: ISO-2022-JP

ISO-2022-JPの例(p. 16)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 74

ESC $B F| K¥ $N ESC (B JP ESC $B $@ !# ESC (B ¥n

日 本 は JP だ 。

 「ESC $B」や「ESC (B」、「¥n」などがエスケープシーケンス
 「F|」や「K¥」、「$N」などは、2バイト文字をASCII文字で表現した場合の文字

(2バイト文字は、1バイト文字2文字の組み合わせで表現できる)

 エスケープシーケンス「ESC $B」や「ESC(B」は、3バイトずつ
 「¥n」は改行を表し、半角文字の扱いなので、改行の前に2バイト文字がある場合は、
改行と2バイト文字との間にもエスケープシーケンス

 文章の開始(終了)が1バイト文字の場合は、文章の先頭(終了)にエスケープシーケンスはなし
 文章の開始が2バイト文字の場合は、文章の先頭にエスケープシーケンスあり

モード切り替えの考え方[1](p. 16)

同じ文字集合に属する文字が現れることが多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 75

6 月 1 日

コンピュータサイエンス 1 の授業

半角の文字 日本語の文字

 上側の文章: 日本語文字がいくつか続いた後、半角文字が少しあり、また日本語文字が続く
 下側の文章: 日本語文字と半角の文字が交互にある

モード切り替えの考え方[2](p. 16)

普通の日本語の文章は、日本語の文字がずっと続き、たまに
半角文字が出てくるということが多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 76

頻繁に文字集合が切り替わるわけではない(ある言語と別の言語の文字が1文字ずつ
交互に出てきたり、ということは少ない)

→文字集合がどこで切り替わっているか、わかるようにしておけば良い

ある言語の文章では、その言語の文字がずっと続き、別の言語の文字はところどころに出てくる

モード切り替えの考え方[3](p. 16)

文字集合切り替えのための特別な記号を用意

ここから先はASCII文字

ここから先は日本語文字

ここから先は中国語漢字

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 77

エスケープシーケンス

東女はTWCUです。

ここから先は日本語文字

ここから先はASCII文字 ここから先は日本語文字

「。」の後に改行がある場合、改行はASCII扱い
「。」の後が何もない場合は何もなし

モード切り替えの考え方[4](p. 16)

文字集合の切り替わりにエスケープシーケンスを入れる

文章の開始(終了)がASCII文字の場合は、文章の先頭(終了)に
エスケープシーケンスはなし

文章の開始が日本語文字の場合は、文章の先頭にエスケープシーケンスあり

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 78

東女はTWCUです。

「ここから先は日本語文字」という
意味のエスケープシーケンス

「ここから先はASCII文字」という
意味のエスケープシーケンス

ここから先は日本語文字という
意味のエスケープシーケンス

改行があれば、「ここから先はASCII文字」と
いう意味のエスケープシーケンス
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モード切り替えの考え方[5](p. 16)

エスケープシーケンスは、3バイトずつ

改行は半角文字の扱いなので、改行の前に2バイト文字がある場合は、
改行と2バイト文字との間にもエスケープシーケンス

文章の開始(終了)が1バイト文字の場合は、文章の先頭(終了)に
エスケープシーケンスはなし

文章の開始が2バイト文字の場合は、文章の先頭にエスケープシーケンス
あり

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 79

モード切り替えの考え方[6](p. 16)

日本語文字: 1文字2バイト

ASCII文字: 1文字1バイト

改行はASCII文字扱い
Mac OSやUNIX系OSだとASCII文字1文字分= 1バイト

WindowsだとASCII文字2文字分= 2バイト

エスケープシーケンス: 1つ3バイト
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日本語文字: 6文字 = 12バイト
ASCII文字: 4文字 = 4バイト
エスケープシーケンス: 3個 = 9バイト

25バイト

東女はTWCUです。

※この文章は改行なしとする

モード切り替えの問題(p. 17)

文書を先頭から順番に見ていく場合には問題ない

文書を途中から見ていくときに問題が生じる

見始めた途中の文字が、ASCII文字か日本語文字か、エスケープシーケンスかが
判別できない
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Ex. 見始めた途中の文字が「70」番だった場合
ASCII文字の「F」?
日本語文字の一部?

韓国語の一部?

検索や置換などの文書処理に時間がかかる

ASCII文字の番号を避ける(p. 17)

ASCIIで使われていない番号を2バイト文字の番号にあてる方法

EUC(日本語のものをEUC-JP)

第1バイト(前半の8ビット)と第2バイト(後半の8ビット)両方でASCII領域が避けられている

SJIS(Shift JIS)

第2バイト(後半の8ビット)ではASCII領域も使われている

文章のバイト数は、単純に、日本語文字で2バイト、ASCII文字で1バイトで
数えれば良い
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EUCとSJIS[1](p. 17)

ASCII文字: 8個の0と1で、1文字分を表現

実際には、7個の0と1で1文字分を表現

8ビット目は必ず0
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XXXXXXXX

0000000から1111111まで、フルに
使ってASCII文字を1文字ずつ表現必ず0

= ASCII文字は、0XXXXXXX という形
Ex. 「a」を0と1で表現すると: 01100001

8ビット目が1になる番号(1XXXXXXXという形の番号)は
ASCII文字ではない

EUCとSJIS[2](p. 17)

ASCIIで使われていない番号を2バイト文字の番号にあてる方法

EUC(日本語のものをEUC-JP)

第1バイト(前半の8ビット)と第2バイト(後半の8ビット)両方でASCII領域が避けられている

SJIS(Shift JIS)

第2バイト(後半の8ビット)ではASCII領域も使われている

文章のバイト数は、単純に、日本語文字で2バイト、ASCII文字で1バイトで
数えれば良い
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00110110100101101010010101101010
例えばある文章が...

0から始まっているからASCII文字

1から始まっているから日本語文字
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Webやメールでの文字化け(p. 18)

Webページや電子メール

文字コードの指示が文書中に書かれている場合

文字コードの指示が文書中に書かれていない場合
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「charset=iso-2022-jp」や「charset=Shift_JIS」など

ソフトウェアは指示通りに文字コードを解釈し、表示

ソフトウェアは文書のデータの特徴から文字コードを判別

文字化けが発生する場合
文書中の文字コードの指示が間違っている場合
文字コードの指示がなく、文字コードを判別できなかった場合

やってみよう!

日本語の文章のバイト数を考えてみよう!

ISO-2022-JPだと?

EUC-JPだと?

Shift JISだと?
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日本はJPだ。

こんにちは!

東京女子大学へようこそ!Welcome!!

アルファベットは半角,文末に1バイトの改行あり(p. 32の問3)

アルファベットと記号は半角, 「こんにちは!」の後に「CRLF」の改行, 

「Welcome!!」の後には何も文字はなし

Unicode

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 87

言語圏ごとの文字コード(p. 18)

これまでの多バイト文字の扱い:

異なる言語圏ごとに文字集合を作成
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様々な文字集合ができてしまって不便
コンピュータネットワークの国際化が進んだ
コンピュータの資源が豊富になった

国際文字集合規格として各文字集合を統一化

統一文字コード(p. 18)
Unicode

ASCII

ラテン文字

日本語

韓国語

中国語

ベトナム語

ギリシャ文字

記号

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 89

Unicodeバージョン5.2.0で
107361文字

UTF-8(p. 18)

Unicodeでの代表的な符号化方式

1文字を1～6バイトの可変長(文字によってバイト数が異なる)で
符号化する方式

ASCIIやISO-2022-JP、Shift JIS、EUC-JPは1文字を全て同じバイト数で
表現している

OS(WindowsやMacなどのオペレーティングシステム)でファイル名などの
内部処理に利用

半角英数を符号化した結果が、ASCII文字と全く同じになるため、従来の
システムと相性が良い
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現在、Unicodeへの移行が急速に進んでいる
 ただし、以前から使われてきたファイルを移行するのは大変なので、
完全移行には時間がかかる


