
1

コンピュータ・サイエンス1

第7回
コンピュータでの情報の扱い(4)

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

第7回の内容
コンピュータでの情報の扱い方(4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3

前回の復習 負の数の表現[1](p. 9)

コンピュータでの計算は、全て足し算

コンピュータでの計算は、電気回路で実行
電気回路: 電気が通る線を組み合わせて、様々な処理をするためのもの

(コンピュータを構成する最も基本的な部品)

足し算, 引き算, かけ算, 割り算をするには、それぞれのために専用の回路が必要

足し算専用回路, 引き算専用回路, かけ算専用回路, 割り算専用回路

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

経済的に良くない

足し算専用回路(加算器)を
組み合わせて他の計算をカバー

負の数の表現[2](p. 9)

足し算の組み合わせで他の計算も行う

引き算: 「a-b」を、「a+(-b)」(bを負数と考える)

かけ算: 足し算の繰り返しとして計算

割り算: 引き算の繰り返しとして計算

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

コンピュータでも負数を扱う
方法1: 真数表現
方法2: 2の補数表現

真数表現(p. 9)

数を表す2進数に符号(+ or -)を表す1ビットを付加

数の先頭のビットで符号を表す

0が「+」, 1が「-」を表す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

「符号ビット」と呼ぶ

10進数 2進数

-3 1 0 1 1

-2 1 0 1 0

-1 1 0 0 1

-0 1 0 0 0

+0 0 0 0 0

+1 0 0 0 1

+2 0 0 1 0

+3 0 0 1 1

符号ビット

具合が悪いので
真数表現はあまり使われない

数を表す部分

0が「+0」と「-0」の
2種類できてしまう

2

2の補数表現[1](p. 9)

負の数Nを、正の数N(2進数)の0と1を反転させて1を加えた数で
表現する方法

0と正の整数(自然数)は、そのまま表現(この計算はしない)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

Ex.

(-10)10

= (-01010)2

→ (10101 + 1)2 = (10110)2

「10」を2進数にして
「-」をつけたもの

「-01010」の「-」をとって
「1」と「0」を逆にしたもの

(-10)10の2進数
(2の補数表現)

2の補数表現[2](p. 9)

 2の補数 = 負の数を2進数で表現したもの(コンピュータの世界では)

 計算方法(例: -20を10桁の2進数に直す)

1. 2の補数に直したい10進数のマイナスを取り除く
 (-20)10→ (20)10

2. 1. の結果を2進数に直す
 (20)10 = (0000010100)2

3. 2. の結果の0と1を逆にする(0の桁を1、1の桁を0にする)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

0 0 0 0 0 1 0 1 0 0

1 1 1 1 1 0 1 0 1 1

2の補数表現[2](p. 9)

 2の補数 = 負の数を2進数で表現したもの(コンピュータの世界では)

 計算方法(例: -20を10桁の2進数に直す)

4. 3. の結果に1を足し算する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

1111101011
1+

1111101100

-20を2進数に直した結果
(2の補数 = 2進数での負の数の表現)

2進数での負の数の表現では、
「-」の記号はつけない

2の補数表現の利点(p. 10)

引き算(符号付きの足し算)をそのまま足し算として処理できる
(自然数と同様に処理できる)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

Ex.

(10 + 3)10 = (01010 + 00011)2 = (01101)2

(-6 + 3)10 = (11010 + 00011)2 = (11101)2

真数表現: 符号付きの足し算を処理するには、別の回路が必要
(単純に足すことはできない)

2の補数を10進数に変換[1]

2の補数から1を引き、0と1を反転させて10進数になおして「-」をつける

負の数を2の補数に変換するときの逆

この計算は、負の数だけ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

Ex.

(110110)2

→ (110110 - 1)2 = (110101)2

→ (-001010)2

= (-10)10

2の補数から1を
引いたもの

「110101」の0と1を
逆にしたもの(110110)2(2の

補数)の10進数

2の補数を10進数に変換[2]

計算方法(例: 1111101100を10進数に直す)

1. 2の補数から1を引き算する

2. 1. の結果の0と1を逆にする(0の桁を1、1の桁を0にする)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

※2の補数→10進数の方法は、10進数→2の補数の逆

1111101100
1-

1111101011

1111101011

0000010100

3

2の補数を10進数に変換[2]

計算方法(例: 1111101100を10進数に直す)

1. 2. の結果を10進数に直す

(0000010100)2 = (20)10

2. 3. の結果に-(マイナス)をつける

(20)10→ (-20)10

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

1111101100を
10進数に直した数

※2の補数→10進数の方法は、10進数→2の補数の逆

2進数の引き算[1]

10進数の引き算だと...

ある桁の引かれる数が引く数より小さければ、1つ大きな桁から10を借りる

10を借りる: 貸した桁から1を引き、借りた桁に10を足す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

1 0 0

1-

10を借りる

0 10 0

1-

10を借りる

0 9 10

1-

0 9 9

引き算の答え: 99

2進数の引き算[2]

2進数の引き算だと...

ある桁の引かれる数が引く数より小さければ、1つ大きな桁から
(10)2(10進数で2)を借りる
2を借りる: 貸した桁から1を引き、借りた桁に2を足す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

1 0 0

0 0 1-

2(2進数で10)を借りる

0 2 0

0 0 1-

2(2進数で10)を借りる

0 1 2

0 0 1-

0 1 1

引き算の答え: 011

※コンピュータ的には引き算はしないので、人間が2の補数→10進数の計算をするための引き算

正の数と負の数の見分け方[1]

大前提: 数を表す2進数の桁数は決まっている

普通のコンピュータで32桁(or 64桁)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

ということは…例えば(10)10は、コンピュータ的には…

0000….00001010

と考えている

※授業のスライド中では32桁分も書けないので、そのときどきで適当なところで割愛

28個の「0」

正の数と負の数の見分け方[2]

負の数(2の補数)の計算方法: 負の数Nを、正の数N(2進数)の0と1を
反転させて1を加える

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

コンピュータ的には32桁で数を表すので…

(-10)10→ (10)10

= (0000…00001010)2

→ (1111…11110101 + 1)2 = (1111…11110110)2

28個の「0」も全て「1」に反
転される

負の数は結果的に一番大きな桁(一番左の桁)が「1」になる

一番大きな桁(一番左の桁)が「0」であれば正の数、「1」であれば負の数として扱う

111100001111

101010101000001111111100

正の数と負の数の見分け方[3]

2進数を見たときに...(2の補数を考える場合)

「2の補数を考える」という場合は、先頭の桁を見て、正の数か負の数かを判断

「2の補数を考える」と書かれていない場合は、負の数を考えなくてOK

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

2進数の数

0101010101

「0」で始まっているので、
正の数

「1」で始まっているので、
負の数

4

正の数と負の数の見分け方[3]

2進数で表された数は、一番大きな桁(一番左の桁)が「0」であれば
正の数、「1」であれば負の数

10進数で表された数は、普通に正の数、負の数として計算

正の数であれば、割り算だけで2進数に変換
Ex. 「+5」と書かれていれば、割り算だけで2進数に変換

負の数であれば、2の補数の方法で2進数に変換
Ex. 「-5」と書かれていれば、2の補数の方法で2進数に変換

ただし、足し算や引き算をした結果を、2の補数を含めて計算すること

計算の結果、一番大きな桁が「0」であれば正の数

計算の結果、一番大きな桁が「1」であれば負の数

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

桁あふれ(オーバーフロー)(p. 11)

2の補数に関係した桁あふれ(オーバーフロー)が起こりうる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

0 1 10

0 1 1 1 0
0 0 1 0 1+

1

Ex. 2進数5桁の計算(10進数で14+5の計算)

先頭の桁が1になってしまった

先頭の桁が1の場合は、2進数で負の数として扱う

計算結果: (-13)10(負の数)
2の補数に関係した

桁あふれ(オーバーフロー)

1 0 0 1 1

負の数を表す

桁あふれ[まとめ][1]

桁あふれの分類(その1)

足し算等の何らかの計算の結果、コンピュータが扱うことのできる数の桁数の
限界を超えてしまう場合
Ex. 4桁の数「0110+0110+0110」の計算
→本来の計算結果は「10010」で5桁になってしまうので、5桁目が無視されてコンピュータが
出す結果は「0010」
→コンピュータが出す結果と本来の結果が違うことになる現象

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

※人間やコンピュータがミスをした、という現象ではない

ある意味、コンピュータの性能の限界を超えてしまうということで、
その結果として、本来の計算結果とは違う結果がでる現象

桁あふれ[まとめ][2]

桁あふれの分類(その2)

足し算等の何らかの計算の結果、数の正と負が違ってしまう場合
Ex. 4桁の数「0110+0110」の計算
→本来の計算結果は「1100」で、1桁目が1なので、コンピュータは計算結果を
負の数(-4)として取り扱い
→本来の計算結果は正の数(12)

→コンピュータが出す結果と本来の結果が違うことになる現象

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

本来の計算結果は正(負)の数なのに、計算結果が
負(正)の数になってしまう現象

※人間やコンピュータがミスをした、という現象ではない

桁あふれ[まとめ][3]

どのような数を計算に使っても、計算結果を見て...

1. 計算結果が決められた桁数を超えていれば、超えた分の桁の数を削除

2. 計算結果の先頭の桁が0か1かで、正か負を判断

正の数(先頭の桁が0)であれば、普通に10進数に直す

負の数(先頭の桁が1)であれば、2の補数の方法で10進数に直す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

4桁の2進数の計算結果: (100110)2

桁数を超えた部分= 削除

計算結果: (0110)2

4桁の2進数の計算結果: (0101)2

4桁の2進数の計算結果: (1010)2

正の数と判断

計算結果: (5)10

負の数と判断

計算結果: (-6)10

やってみよう!

 (+10)+(+8)を5桁の2の補数として計算し、
10進数として表現

 (-10)+(+8)を5桁の2の補数として計算し、
10進数として表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

桁あふれも考慮すること

5

小数の表現方法

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

整数以外の数を表現するには?

コンピュータが表現できる数: 整数, 小数

整数以外の数

小数

分数

n乗根(平方根, 立方根, etc)

π(円周率)

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

全て小数として表現

2進数の小数を10進数に直す[1]

1. 10進数の整数部分は、通常の方法で2進数に直す

2. 10進数の小数部分に2をかけ算する

3. 2. の結果、整数部分を小数点第1桁にする

4. 3. の結果、小数部分をまた10進数の数とする

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

 小数部分が0になるまで繰り返す
 無限小数になることも(10進数できりのいい数も2進数では無限小数になりえる)

 2. の整数部分を小数点第2桁、第3桁、...と置いていく
 1. の整数部分と2. の整数部分を並べたものが2進数での小数になる

2進数の小数を10進数に直す[2]

10進数の小数を2進数に直すには?(例1)

10進数の0.8125を2進数に直す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

1.625

0.8125

2×

1.25

0.625

2×

0.5

0.25

2×

1.0

0.5

2×

0. 1 1 0 1 0になったので計算終了

(0.8125)10 = (0.1101)2

2進数の小数を10進数に直す[3]

10進数の小数部分を2進数に直すには?(例2)

10進数の3.8を2進数に直す(整数部分の3は2進数で11)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

1.6

0.8

2×

1.2

0.6

2×

0.4

0.2

2×

0.8

0.4

2×

0. 1 1 0 0 0.8になって最初に戻ったので、
無限小数

(3.8)10 = (11.110011001100....)2

10進数の小数を2進数に直す[1]

例: 101.1101 (整数部分101は10進数で5)

1. 2進数の整数部分は、通常の方法で10進数に直す

2. 10進数の小数部分各桁の上に「1/2」を書く

3. 2. で書いた「1/2」の「2」の右肩に左から1, 2, 3, ...と書いていく

1/20, 1/21, 1/22, ...ができていく

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

2.

0 . 1 1 0 1

左から右に、1, 2, 3, ...と番号をつける

2

1

2

1

2

1

2

1 3.

2

1

2

1

2

1

2

1

0 . 1 1 0 1

4321

6

10進数の小数を2進数に直す[2]

4. 各桁の上の「1/2n」と、それぞれの桁の数をかけあわせる

5. 4. の結果を足し合わせ、1. の整数部分とあわせる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

3.

21

1

22

1

23

1

24

1

0 . 1 1 0 1

4.

21

1

22

1

23

1

24

1

0 . 1 1 0 1
××××

=

1

21

1

22 0
1

24

5.
1

21

1

22 0
1

24

足し合わせる
=

0.5 + 0.25 + 0.0625 = 0.8125

5.8125

1. の整数部分とあわせる

小数の表現方式

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

小数を表現する方法(p. 10)

固定小数点方式

浮動小数点方式

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

固定小数点方式[1](p. 10)

小数部分の桁数をあらかじめ決めておく方法

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 34

Ex. 2進数で表現した数の右から2ビットを小数部分とする場合
10進数の小数 2進数の小数

0.00 00 00

0.25 00 01

0.50 00 10

0.75 00 11

1.00 10 00

1.25 10 01

1.50 10 10

… …

3.75 11 11

小数部分は1/22刻み(0.25刻み)で表現

固定小数点方式[2](p. 10)

小数部分の桁数がnの場合: 2進数では、小数部分が1/2n刻みで表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 35

nを大きくすると、それだけ小数部分を細かく表現可能

※ただし、実際コンピュータは小数も2進数で考えているが、人間が考えるときの便宜上、
10進数で考えることが多い

固定小数点方式[3](p. 10)

小数を表す桁数が決まっていると…

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 36

Ex. 右から2桁を小数部分とすると…

(2 ÷ 1000)10 = (0.002)10→(0.00)10

小数を正確に表現できない

何桁分の小数部分を持っているかは数値によって異なる
=固定小数点方式で小数を表せる場合は少ない

浮動小数点方式

7

浮動小数点方式[1](p. 10)

小数: D × 10nと表現できる

Ex.

0.5 = 5×10-1

-0.0625 = -6.25×10-2

0.0000000084 = 8.4×10-9

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 37

どの数でも「×10n」の「10」の部分は同じ

小数を「D×10n」の形と考え、「D」と「n」だけ記憶しておく

浮動小数点方式[2](p. 10)

浮動小数点方式:

小数を「D×10n」と考え、「D」と「n」を記憶することで小数を表す方式

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 38

Ex.

D = 6.25, n = -3の場合: 0.00625

D = 6.25, n = -2の場合: 0.0625

D = 6.25, n = -1の場合: 0.625

D = 6.25, n = 0の場合: 6.25

 D: 仮数部
 n: 指数部
と呼ぶ

nの数値が何かで、小数点が仮数の中を動くように
見えるから「浮動小数点」と名づけられた

浮動小数点方式[3](p. 10)

仮数部

符号は「0」が「+」、「1」が「-」

固定小数点方式

指数部

符号は「0」が「+」、「1」が「-」(ただし、2の補数表現とは別の特殊な形で
表現される)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

浮動小数点方式[4](p. 10)

コンピュータでは、指数部は2の累乗
→小数を「D×2n」として考え、「D」と「n」を記憶

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 40

Ex.

 0.5 = 1.0×(1/2) = 1.0×2-1

 -0.0625 = -1.0×(1/16) = 1.0×2-4

大きな数の表現(p. 10)

浮動小数点方式を利用して表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

Ex.

 2000000000000 = 2×1012

 -425000000000000000 = -4.25×1017

指数部が「+」の数になる

コンピュータは「2」と「+12」, 「-4.25」と「+17」を記憶しておく
(実際には、「×10n」ではなく「×2n」で表現)

大きな数の表現[例](p. 10)

Windowsの電卓のあるモード(オーバーフローをなかなかしないモード)で...

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

Ex. 1000000000000000×1000000000000000

= 1.e+30

1.0×1030 という意味
(浮動小数点方式での表現)

※オーバーフローしにくいモードは、大きな数を浮動小数点方式で表現する
= それだけたくさんの桁がある数を表現できるので、オーバーフローしにくい

8

桁落ち(1)

小数部分が無限のものを扱えるわけではない

例えば割り算で割り切れない数や円周率

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 43

小数部分を適当なところで切り捨てる
(四捨五入ではない)

例えば...1÷3: コンピュータは「0.3333...333」と考える

本来はこの後も無限に続く

コンピュータが扱える小数の桁数:

「有効桁数」と呼ぶ

桁落ち(2)

小数部分が無限のものは適当なところまでで切り捨てられる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 44

本来の数よりも、小数の桁数が小さくなってしまう現象

桁落ち

桁落ちの例
Windowsの電卓のあるモード(オーバーフローをなかなかしないモード)で...

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 45

Ex. 電卓での計算: 9999999999999999×9999999999999999

= 9.999999999999998e+31 = 9.999999999999998×1031

9999999999999999
9999999999999999×

...91

...91

...01

+

つまり本当の計算では...

9999999999999999×9999999999999999

= x.xxxx...01

桁落ち

桁落ちが起こると...

数が本来の数よりも小さくなってしまう

微妙な数値が必要な場合には要注意

桁落ちをした数に大きな数をかけると、本来の数に大きな数を
かけたときとの差が大きくなる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 46

例えば...1÷3の結果が桁落ちし、0.333になるとすると

 0.333に100000をかけると33300

 1×100000を3で割ると(計算の順序を変えると)33333.333

 本来の1/3に100000をかけると、33333.333….

 コンピュータで計算をするときは、計算の順番に注意
(割り算はなるべく後にすること)

 例えば「1÷3×100000」の計算は、「1×100000」をしてから3で割る

やってみよう![1]

2進数1.101を10進数に変換
(2010年度ITパスポート春季試験問題)

2進数に変換した時、有限小数で表現できる10進数は、
以下のうちどれか

0.1

0.2

0.4

0.5

(2012年度ITパスポート秋季試験問題)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 47

やってみよう![2]

0.0000055を浮動小数点方式で表現

0.000000001234を浮動小数点方式で表現

456000000000000を浮動小数点方式で表現
※3つとも仮数部は小数点第2位の小数とすること

 (10÷7)×10000を計算

小数点第2位までが有効桁数

桁落ちを考えて計算すること

10÷7×10000を計算

小数点第2位までが有効桁数

桁落ちの影響がなるべく少ないように計算すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 48

9

文字の表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 49

文字の符号化(p. 13)

文字: コンピュータは整数に置き換えて扱う(番号をつけて扱う)

文字を2進数で表現する(「符号化」と呼ぶ)

2進数で表現される文字集合

半角英数文字

図形文字

制御文字

多バイト文字

図形文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 50

※文字集合: 文字の集まり

図形文字と制御文字(p. 13)

図形文字: 通常、画面に表示される文字

人間が明示的に書いたり読んだりする文字

アルファベット, 数字, ひらがな, 漢字, 記号, etc.

制御文字: 通常、画面に表示されない文字

コンピュータに何らかの制御をするための文字

改行, TAB, ESC, etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 51

ASCII文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 52

ASCII文字(p. 13)
ASCII: American Standard Code for Information Interchange

半角文字を表す文字集合

アルファベット大文字(26文字)

アルファベット小文字(26文字)

数字(10文字)

記号(スペース, 「,」, 「.」, etc.)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 53

1文字を表すために、最低限7ビット必要
(6ビット: 64種類の情報, 7ビット: 128種類の情報)

※1文字を表す2進数の桁数(ビット数)は、どの文字でも同じ(つまり7ビット)

図形文字(p. 13)

ASCII: 情報量が7ビットで収まるように、扱う文字を取り決めた文字集合

アルファベット(大文字・小文字): 52文字

数字: 10文字

記号(スペースを含む): 33文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 54

図形文字: 合計95文字

10

番号例(p. 14)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 55

番号 文字 番号 文字 番号 文字

47 0 65 A 97 a

48 1 67 B 98 b

49 2 68 C 99 c

50 3 69 D 100 d

51 4 70 E 101 e

52 5 71 F 102 f

53 6 72 G 103 g

54 7 73 H 104 h

55 8 74 I 105 I

56 9 75 J 106 j

「数」としての0～9ではなく、「文字」としての0～9

番号の決まり(p. 14)

7ビットで1文字を表現 = 128文字表現可能

図形文字: 95文字

32番～126番までが図形文字

残り33文字: 制御文字を表現

0番～31番と127番が制御文字
※32番のスペースを、制御文字と考えることもある

アルファベットの大文字と小文字の番号に規則

小文字の番号は、大文字の番号に32(=(25)10=(100000)2)を足したもの

Ex. A: (65)10 = (01000001)2, a: (97)10 = (01100001)2

大文字⇔小文字の変換はやりやすい

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 56

制御文字例(p. 14)

BS(8番): Back Space

HT(9番): TAB

LF(10番): UNIX系OSでの改行

CR(13番): Mac OSでの改行

DEL(127番): Delete

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 57

※OS: Operating System(オペレーティングシステム)

 Windowsでの改行は、13番と10番を組み合わせて「CRLF」の2つの
制御文字で表現される
 つまり、Windowsでは1つの改行が2文字分(2ビット)

ビット数[1](p. 14)

コンピュータでは8ビットを1つの単位として扱うことが多い
→ ASCII文字も8ビットで表現すると扱いやすい

8ビットのうち、7ビット分(2進数で7桁目まで)で文字を表現する

残りビット(2進数で8桁目)に常に0を入れておく

ASCII文字としては無駄なビット

日本語を表現するときに利用

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 58

例えば...

A: 65番(10進数)

= 1000001番(2進数)

= 01000001番(2進数, コンピュータ内での表現)

ASCII的には無駄な(何も利用していない)ビット

ビット数[2](p. 14)

8ビットで1文字を表現 = 1バイトで1文字を表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 59

「1バイト文字」と呼ばれる

Ex. 「Hello, my name is John.」
 アルファベット: 17文字
 記号: 2文字
 スペース: 4文字

23文字 = 23バイト

やってみよう!

半角英数字の文章のバイト数を考えてみよう!

Mac OSだと?

Windowsだと?

UNIX系OSだと?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 60

Hello, everybody!

Welcome to Tokyo Woman's Christian University!

それぞれ、何バイト?

※「Hello, everybody!」の後に改行が1つ、その他に改行はなし

11

多バイト文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 61

背景[1](p. 15)

コンピュータは主にアメリカで作られ発展

使う人も、専門家だけだった

当初は扱う文字はアルファベット・数字・いくつかの記号でよかった

コンピュータが全世界に普及

使う人も、専門家だけではなくなった

英語圏以外の言語圏に対応する必要が出てきた
様々な言語圏の文字に対応

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 62

背景[2](p. 15)

様々な言語圏の文字: 英語圏の文字と同様に2進数で表現する必要性

英語圏の文字: 128文字で表現可能
1バイト分(256文字分)のうち、128文字分は英語圏の文字

英語圏以外の文字: 128文字以上必要な場合も

日本語

中国語

韓国語

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 63

128文字では収まらない

1文字を複数のバイト(多バイト)で表現

文字化け(p. 15)

多バイト文字の出現により、文字化けが発生

文字化けの原因

フォントの問題

文字集合の符号化方式の問題

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 64

「文字コード」と呼ぶ

詳細な理由は何であれ...

要は文字を表す2進数(0と1の並び)を、コンピュータが理解して
いないために発生

 その2進数をどのような形でディスプレイに表示して良いかを
コンピュータが理解していないため

フォントの問題[3](p. 15)

機種依存文字: コンピュータによって表現のしかたが違う文字

それぞれの文字を表現するビット列が、コンピュータによって異なる

1文字1文字を表現するビット列は、JIS(日本の国家規格)などで決まっている
→ コンピュータの環境に依存しない

規格で決められた文字に含まれていない文字もある

Ex. 丸付き数字(①, ②, …)、ローマ数字(Ⅰ, Ⅱ, …), etc.

外字: 登録されていない文字を、利用者が作ったもの

人名漢字などを作ることが多い

作ったコンピュータでしか使えない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 65

機種依存文字

符号化方式の問題[1](p. 15)

符号化: 1つの文字を2進数(ビット列)として表現すること

ある1つの文字を表現するビット列が複数通り存在する場合

半角英数の文字はASCIIの1通りだけ
他にも存在するが、ASCIIが世界標準

大部分のコンピュータはASCIIを利用

日本語は複数通り存在

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 66

12

符号化方式の問題[2](p. 15)

ある文書で使われている符号化方式をコンピュータが判別できないときに
文字化け

判別できなければ、コンピュータが普段使っている符号化方式で表示しようと
することが多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 67

Ex. Windowsで文書を開いた場合
文書はJISで書いてあり、WindowsはJISであると判別できなかった
WindowsはShift JISとして開こうとする
文書は文字化けして表示される

※ソフトウェアによっても、符号化方式を判別できるものとできないものがある
(Ex. Windowsのメモ帳は、JISなどは判別できない)

日本語の符号化方式

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 68

日本語の文字(p. 15)

日本語固有の文字

ひらがな

カタカナ

漢字

かぎカッコ

句読点

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 69

日本語の文字(p. 15)
ASCII

1文字を8ビットで表現→全部で256文字分表現可能

現状で128文字存在(128文字分利用されている)

日本語

ひらがな: あ～ん(ゐ, ゑなどの旧字を含む), 濁音・半濁音,

小文字(「ぁ」, 「ぃ」など)

カタカナ: ア～ン(ヰ, ヱなどの旧字を含む), 濁音・半濁音(ヴを含む),

小文字(「ァ」, 「ィ」, 「ヵ」, 「ヶ」など)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 70

169文字

ひらがな・カタカナだけでもASCIIでは表現できない

日本語文字集合の規格(p. 16)

現状での日本語文字集合の規格: JIS X 0208:1997

ひらがな・カタカナ・漢字・非漢字文字で6879個

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 71

16ビット(2バイト)で日本語1文字を表現

JIS第1水準(使用頻度の高い漢字): 2965個
JIS第2水準(使用頻度の低い漢字): 3390個

213 = 8192なので、13ビットで表現可能
コンピュータ処理では、バイト単位(8ビット単位)が好都合

ASCII文字との区別(p. 16)

日本語の文書

日本語の2バイト文字

ASCIIの1バイト文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 72

混在

日本語の2バイト文字(JIS X 0208)とASCIIの1バイト文字は区別する必要
(1つの文書の中で、どれが2バイト文字でどれが1バイト文字か)

モード切り替えによる区別方法
ASCII文字の番号を避ける区別方法

13

モード切り替え(p. 16)

文字集合切り替えのための特別な記号を用意

ここから先はASCII文字

ここから先は日本語文字

ここから先は中国語漢字

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 73

エスケープシーケンス

通常の文書では頻繁に文字集合が切り替わることがなく、同じ文字集合に属する文字が
現れることが多いという性質を利用

 国際標準規格: ISO-2022

 日本語に適用したもの: ISO-2022-JP

ISO-2022-JPの例(p. 16)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 74

ESC $B F| K¥ $N ESC (B JP ESC $B $@ !# ESC (B ¥n

日 本 は JP だ 。

 「ESC $B」や「ESC (B」、「¥n」などがエスケープシーケンス
 「F|」や「K¥」、「$N」などは、2バイト文字をASCII文字で表現した場合の文字

(2バイト文字は、1バイト文字2文字の組み合わせで表現できる)

 エスケープシーケンス「ESC $B」や「ESC(B」は、3バイトずつ
 「¥n」は改行を表し、半角文字の扱いなので、改行の前に2バイト文字がある場合は、
改行と2バイト文字との間にもエスケープシーケンス

 文章の開始(終了)が1バイト文字の場合は、文章の先頭(終了)にエスケープシーケンスはなし
 文章の開始が2バイト文字の場合は、文章の先頭にエスケープシーケンスあり

モード切り替えの考え方[1](p. 16)

同じ文字集合に属する文字が現れることが多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 75

6 月 1 日

コンピュータサイエンス 1 の授業

半角の文字 日本語の文字

 上側の文章: 日本語文字がいくつか続いた後、半角文字が少しあり、また日本語文字が続く
 下側の文章: 日本語文字と半角の文字が交互にある

モード切り替えの考え方[2](p. 16)

普通の日本語の文章は、日本語の文字がずっと続き、たまに
半角文字が出てくるということが多い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 76

頻繁に文字集合が切り替わるわけではない(ある言語と別の言語の文字が1文字ずつ
交互に出てきたり、ということは少ない)

→文字集合がどこで切り替わっているか、わかるようにしておけば良い

ある言語の文章では、その言語の文字がずっと続き、別の言語の文字はところどころに出てくる

モード切り替えの考え方[3](p. 16)

文字集合切り替えのための特別な記号を用意

ここから先はASCII文字

ここから先は日本語文字

ここから先は中国語漢字

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 77

エスケープシーケンス

東女はTWCUです。

ここから先は日本語文字

ここから先はASCII文字 ここから先は日本語文字

「。」の後に改行がある場合、改行はASCII扱い
「。」の後が何もない場合は何もなし

モード切り替えの考え方[4](p. 16)

文字集合の切り替わりにエスケープシーケンスを入れる

文章の開始(終了)がASCII文字の場合は、文章の先頭(終了)に
エスケープシーケンスはなし

文章の開始が日本語文字の場合は、文章の先頭にエスケープシーケンスあり

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 78

東女はTWCUです。

「ここから先は日本語文字」という
意味のエスケープシーケンス

「ここから先はASCII文字」という
意味のエスケープシーケンス

ここから先は日本語文字という
意味のエスケープシーケンス

改行があれば、「ここから先はASCII文字」と
いう意味のエスケープシーケンス

14

モード切り替えの考え方[5](p. 16)

エスケープシーケンスは、3バイトずつ

改行は半角文字の扱いなので、改行の前に2バイト文字がある場合は、
改行と2バイト文字との間にもエスケープシーケンス

文章の開始(終了)が1バイト文字の場合は、文章の先頭(終了)に
エスケープシーケンスはなし

文章の開始が2バイト文字の場合は、文章の先頭にエスケープシーケンス
あり

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 79

モード切り替えの考え方[6](p. 16)

日本語文字: 1文字2バイト

ASCII文字: 1文字1バイト

改行はASCII文字扱い
Mac OSやUNIX系OSだとASCII文字1文字分= 1バイト

WindowsだとASCII文字2文字分= 2バイト

エスケープシーケンス: 1つ3バイト

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 80

日本語文字: 6文字 = 12バイト
ASCII文字: 4文字 = 4バイト
エスケープシーケンス: 3個 = 9バイト

25バイト

東女はTWCUです。

※この文章は改行なしとする

モード切り替えの問題(p. 17)

文書を先頭から順番に見ていく場合には問題ない

文書を途中から見ていくときに問題が生じる

見始めた途中の文字が、ASCII文字か日本語文字か、エスケープシーケンスかが
判別できない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 81

Ex. 見始めた途中の文字が「70」番だった場合
ASCII文字の「F」?
日本語文字の一部?

韓国語の一部?

検索や置換などの文書処理に時間がかかる

ASCII文字の番号を避ける(p. 17)

ASCIIで使われていない番号を2バイト文字の番号にあてる方法

EUC(日本語のものをEUC-JP)

第1バイト(前半の8ビット)と第2バイト(後半の8ビット)両方でASCII領域が避けられている

SJIS(Shift JIS)

第2バイト(後半の8ビット)ではASCII領域も使われている

文章のバイト数は、単純に、日本語文字で2バイト、ASCII文字で1バイトで
数えれば良い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 82

EUCとSJIS[1](p. 17)

ASCII文字: 8個の0と1で、1文字分を表現

実際には、7個の0と1で1文字分を表現

8ビット目は必ず0

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 83

XXXXXXXX

0000000から1111111まで、フルに
使ってASCII文字を1文字ずつ表現必ず0

= ASCII文字は、0XXXXXXX という形
Ex. 「a」を0と1で表現すると: 01100001

8ビット目が1になる番号(1XXXXXXXという形の番号)は
ASCII文字ではない

EUCとSJIS[2](p. 17)

ASCIIで使われていない番号を2バイト文字の番号にあてる方法

EUC(日本語のものをEUC-JP)

第1バイト(前半の8ビット)と第2バイト(後半の8ビット)両方でASCII領域が避けられている

SJIS(Shift JIS)

第2バイト(後半の8ビット)ではASCII領域も使われている

文章のバイト数は、単純に、日本語文字で2バイト、ASCII文字で1バイトで
数えれば良い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 84

00110110100101101010010101101010
例えばある文章が...

0から始まっているからASCII文字

1から始まっているから日本語文字

15

Webやメールでの文字化け(p. 18)

Webページや電子メール

文字コードの指示が文書中に書かれている場合

文字コードの指示が文書中に書かれていない場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 85

「charset=iso-2022-jp」や「charset=Shift_JIS」など

ソフトウェアは指示通りに文字コードを解釈し、表示

ソフトウェアは文書のデータの特徴から文字コードを判別

文字化けが発生する場合
文書中の文字コードの指示が間違っている場合
文字コードの指示がなく、文字コードを判別できなかった場合

やってみよう!

日本語の文章のバイト数を考えてみよう!

ISO-2022-JPだと?

EUC-JPだと?

Shift JISだと?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 86

日本はJPだ。

こんにちは!

東京女子大学へようこそ!Welcome!!

アルファベットは半角,文末に1バイトの改行あり(p. 32の問3)

アルファベットと記号は半角, 「こんにちは!」の後に「CRLF」の改行,

「Welcome!!」の後には何も文字はなし

Unicode

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 87

言語圏ごとの文字コード(p. 18)

これまでの多バイト文字の扱い:

異なる言語圏ごとに文字集合を作成

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 88

様々な文字集合ができてしまって不便
コンピュータネットワークの国際化が進んだ
コンピュータの資源が豊富になった

国際文字集合規格として各文字集合を統一化

統一文字コード(p. 18)
Unicode

ASCII

ラテン文字

日本語

韓国語

中国語

ベトナム語

ギリシャ文字

記号

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 89

Unicodeバージョン5.2.0で
107361文字

UTF-8(p. 18)

Unicodeでの代表的な符号化方式

1文字を1～6バイトの可変長(文字によってバイト数が異なる)で
符号化する方式

ASCIIやISO-2022-JP、Shift JIS、EUC-JPは1文字を全て同じバイト数で
表現している

OS(WindowsやMacなどのオペレーティングシステム)でファイル名などの
内部処理に利用

半角英数を符号化した結果が、ASCII文字と全く同じになるため、従来の
システムと相性が良い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 92

現在、Unicodeへの移行が急速に進んでいる
 ただし、以前から使われてきたファイルを移行するのは大変なので、
完全移行には時間がかかる

