
情報処理技法
(Javaプログラミング)2

第9回
操作に対して処理が行われるGUI(1)

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

 GUIに処理を付加する～ボタンを押すと...?～

 GUIの部品で入力/選択された値を受け取るには?

第9回の内容

 「GUI」とは何か説明しなさい。

前回の復習問題の解答

人間がソフトウェアとのやりとりの接点を視覚的に表現したもので、例えばボタンや
入力フィールドでソフトウェアを操作したり、ソフトウェアからの処理結果をウィンドウの形で
表示したりできる。

解答例:

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3

GUIに処理を付加～ボタンを押すと...?～

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

1. 利用者がGUIの部品を操作する

 「ボタンを押す」、「キーボードのキーを押す」、「マウスを動かす」などの
操作内容のことを「(ユーザ)イベント ((user) event)」と呼ぶ

 操作が行われることを、「イベントが発生する」と呼ぶ

2. プログラムが、GUIの部品が操作されたことを知る

 GUIの部品が操作されたことをプログラムが知るための機能を
「リスナ (Listener)」と呼ぶ

3. 操作内容に応じて、決められた処理をする

GUIプログラムが動くしくみ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

1. GUIの部品のうち、どの部品でイベントが起こったときに処理を行うかを
決定

2. その部品でどのようなイベントが起こるのかを決定

 ボタンを「押す」、入力フィールドで「Enterキーを押す」、などのイベントの種類を
決定する

 1つの部品で発生するイベントは1つとは限らない

GUIに処理を付加するには?(1)

ボタン

1つの部品でいくつかのイベントが
発生することもあり

マウスの左ボタンを
クリックする

キーボードの
Enterキーを押す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

3. プログラムで、利用するイベントを宣言

4. 目的の部品に、イベントに対応するリスナを登録

 リスナには種類がたくさんあり

 部品にどのリスナを登録するかで、どのイベントを受け取ることができるかが
決まる

GUIに処理を付加するには?(2)

イベントに対応するリスナをGUIの部品に登録する

ボタン

マウスのボタンの押下を
感知するためのリスナ

キーボードのキーの押下を
感知するためのリスナ

どちらのリスナを使う?

(何のイベントが発生する?)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

5. イベントが発生したときの処理内容のプログラムを記述

 処理内容は、メソッドの中に書く

 処理内容を書くメソッド(メソッドの名前や引数)は、リスナによって決められている

GUIに処理を付加するには?(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

GUIプログラムのカタチ(処理つき)(1)
import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {

GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.

}

public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}

public static void main(String[] args) {

new クラス名();

}

}

イベントが発生したときの処理内容を書く領域

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {

GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.

}

public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}

public static void main(String[] args) {

new クラス名();

}

}

GUIプログラムのカタチ(処理つき)(2)

イベントが発生したときの処理内容を書く領域

 リスナやイベントは、Javaでのクラスの一種
 このJavaファイルで、リスナやイベントを利用する、
というパッケージ宣言

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {

GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.

}

public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}

public static void main(String[] args) {

new クラス名();

}

}

GUIプログラムのカタチ(処理つき)(3)

イベントが発生したときの処理内容を書く領域

 発生するイベントに対応するリスナを宣言する
 「implements」で、一種の継承を意味する

(リスナは、GUIのクラスに継承させることが多い)

※「implements」は、厳密には継承とは違う(「実装」と呼ぶ)
Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {

GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.

}

public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}

public static void main(String[] args) {

new クラス名();

}

}

GUIプログラムのカタチ(処理つき)(4)

イベントが発生したときの処理内容を書く領域

GUI部品の変数は、フィールドとして宣言
 特に、JTextFieldやJRadioButtonなど、利用者から
入力をされる部品はフィールドとして宣言する必要

 イベントが発生したときの処理で、利用者からの入力を
処理するときに、変数宣言の位置が重要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {

GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.

}

public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}

public static void main(String[] args) {

new クラス名();

}

}

GUIプログラムのカタチ(処理つき)(5)

イベントが発生したときの処理内容を書く領域

イベントが発生する部品に、
リスナを登録

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {

GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.

}

public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}

public static void main(String[] args) {

new クラス名();

}

}

GUIプログラムのカタチ(処理つき)(6)

イベントが発生したときの処理内容を書く領域

 イベントが発生したときの処理
 「implements」で継承(実装)したリスナのメソッドを
オーバーライドして、処理を記述
 メソッド名や引数・戻り値は、リスナで決められている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

変数宣言の場所の注意
import java.awt.event.*;

import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {

GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.

イベントが発生する部品の変数名.addリスナの名前(this);

.

}

public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}

public static void main(String[] args) {

new クラス名();

}

}

イベントが発生したときの処理内容を書く領域

 イベントが発生したときの処理では、GUI部品の変数を利用する処理も
多い
 JTextFieldに入力された文字列を受け取る, など

 コンストラクタ内で変数を宣言すると、リスナのメソッドとはブロックが違う
= 「変数の宣言がされていない」とコンパイルエラー

リスナのメソッド内で利用するGUI部品の変数は、
必ずフィールド変数として宣言すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

 もっともオーソドックスなリスナ

 ボタンをマウスの左ボタンで押すとき、メニューから選択するときのリスナ

 オーバーライドするメソッドは
「actionPerformed(ActionEvent 引数名)」

戻り値は「void」

引数は「ActionEvent」

主に、「ボタンを押す」という意味のイベント

ActionListener

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

 「メソッドの引数名.getSource()」というメソッドで、どの部品でイベントが
発生したかを知ることができる

 このメソッドを使ってイベントが発生した部品を受け取り、if文で
処理内容を分岐させる

イベントが起こる部品が複数のとき?

JButton okBut, cancelBut;

.

public void actionPerformed(ActionEvent e) {

if (okBut == e.getSource()) { /* 「okBut」が押された場合 */

} else if (cancelBut == e.getSource()) {

/* 「cancelBut」が押された場合 */

}

}

okButが押されたときの処理を書く

cancelButが押されたときの処理を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

例

public class Sample extends JFrame implements ActionListener {

JButton twcu, suginami;

public Sample() { /* コンストラクタ */

getContentPane().setLayout(null);

twcu = new JButton("東女");

twcu.setBounds(10, 10, 100, 25);

twcu.addActionListener(this);

getContentPane().add(twcu);

「東京女子大学!」
と標準出力に出力

「杉並区!」と
標準出力に出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

例(続き1)

suginami = new JButton("杉並");

suginami.setBounds(110, 10, 100, 25);

suginami.addActionListener(this);

getContentPane().add(suginami);

setTitle("サンプル");

setSize(220, 70);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);

} /* コンストラクタ終わり */

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

例(続き2)

public void actionPerformed(ActionEvent e) {

/* ボタンが押されたときの処理内容 */

if (e.getSource() == twcu) { /* 「東女」が押されたときの処理 */

System.out.println("東京女子大学!");

} else { /* 「杉並」が押されたときの処理 */

System.out.println("杉並区!");

}

}

public static void main(String[] args) {

new Sample();

}

}

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

入力/選択された値を受け取るには?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

 GUIの部品には、それぞれ値を受け取るためのメソッドが用意されている

 リスナのメソッドの中で、値を受け取り、その値を処理するプログラムを書く

値の受け取り方

「GUIの部品の変数名(オブジェクト名).メソッド名」で
受け取ることができる

JTextField field;

.

public void actionPerformed(ActionEvent e) {

.

String text;

text = field.getText();

}

例:

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

 JRadioButton, JCheckBox, JToggleButtonで利用可能

 isSelected()

戻り値はboolean型

 「true」であれば、選択されている状態

 「false」であれば、選択されていない状態

ボタン系(1)

if文を使って、xxxボタンが選択されている(true)であれば...をし、
xxxボタンが選択されていなければ(falseであれば)～をする、などのように処理をする

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

 ボタン系の「isSelected()」メソッドの使い方例

ボタン系(2)

JRadioButton maleRadio, femaleRadio;

.

public void actionPerformed(ActionEvent e) {

.

String gender;

if (maleRadio.isSelected() == true) {

// 「男性」のJRadioButtonが選択されている場合
gender = "男性";

} else if (femaleRadio.isSelected() == true) {

// 「女性」のJRadioButtonが選択されている場合
gender = "女性";

} else {

// 性別のJRadioButtonが選択されていない場合
gender = "未選択";

}

}

例:

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

 主にJTextField, JTextAreaで利用可能

 getText()

戻り値はString型

入力フィールド

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

 getSelectedItem()

戻り値は、「Object」という型

 String型でキャストする

JComboBox

String item;

item = (String) comboBox.getSelectedItem();

例(JComboBoxの変数名は「comboBox」):

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

 getValue()

戻り値はint型

JSlider

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

 getSelectedValue()

戻り値は、「Object」という型

 String型でキャストする

JList

String item;

item = (String) list.getSelectedValue();

例(JListの変数名は「list」):

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

 下のウィンドウで、「OK」ボタンを押すと、「名前」の入力欄に入力した
文字列を標準出力に出力するプログラム

 下のウィンドウで、「OK」ボタンを押すと、JComboBoxで選択された
文字列を標準出力に出力するプログラム

やってみよう!

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

