
情報処理技法
(Javaプログラミング)2

第7回
継承

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

第7回の内容
継承

オーバーライド

ポリモーフィズム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

前回の出席課題の回答
アルゴリズムの良し悪しに関して、下記の文章の(ア)～(オ)を埋めなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3

(ア) 計算量
(イ) 多項式時間
(ウ) 指数時間

解答例:

アルゴリズムの速さは、コンピュータで実行したときの秒・分単位の時間的な速さではなく、
(ア)で表現される。(ア)は、アルゴリズムを実行する際の基本処理の回数である。アルゴリズムで
扱うデータの個数を「N」として、N2やN3などの計算を必要とするアルゴリズムを(イ)アルゴリズム、
N!や2Nなどの計算を必要とするアルゴリズムを(ウ)アルゴリズムと呼ぶ。

速いアルゴリズムとわかりやすいアルゴリズムの関係は以下の通りである。
 速いアルゴリズムは(エ)アルゴリズムである。
 (オ)アルゴリズムは遅いアルゴリズムである。

(エ) わかりにくい
(オ) わかりやすい

前回の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

クラスとオブジェクト(1)
オブジェクト指向: 「もの」を中心してソフトウェアを構築する考え方

「もの」: オブジェクト(インスタンスとも)

1つ1つの具体的な実物

名前を示されたとき、「これ」とそのものを特定できるもの

「もの」の分類: クラス

実物を分類したカテゴリ(実物の総称のような概念)

名前を示されたとき、その概念にあてはまるものがいくつか存在するもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

※「オブジェクト」と「インスタンス」は厳密にはちがうもの

クラスとオブジェクト(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

「学生」というカテゴリ(クラス)に分類

「本」というカテゴリ(クラス)に分類

図書館蔵書ID 0002:
マーチン・ファウラー著, 羽生田栄一監訳:
UMLモデリングのエッセンス, 翔泳社

図書館蔵書ID 0001:
児玉公信著: UMLモデリングの本質,
日経BP社 実物の本 =オブジェクト

学生番号 k11x1001: 東京子

学生番号 k10x1001: 善福寺花子
実物の学生 =オブジェクト

クラスとオブジェクト(3)
クラス: 同じ属性と操作を持つオブジェクトの集合

属性(フィールド):オブジェクトが持つ情報(データ)

操作(振る舞い, メソッド): オブジェクトが担当する処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

学生

学生番号
住所
成績

授業に出席する
レポートを書く

本

タイトル
著者

データを見せる
貸し出し処理をする
返却処理をする

犬

名前
飼い主

遊ぶ
寝る
えさを食べる

クラス名 属性(フィールド) 操作(メソッド)

クラスの例

クラスとオブジェクト(4)
1つのクラスにオブジェクトを所属させることができる

クラス: 実物を分類したカテゴリのようなもののため

オブジェクト同士は、それぞれのクラスに定義された操作(処理)を
呼び出す

操作(処理)の呼び出しを「メッセージ」と呼ぶ

メッセージを組み合わせてオブジェクト同士がコミュニケーションすることで
プログラム全体が成り立つ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

属性・操作・メッセージ(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

利用者

タイトル
著者
出版社

持っているデータ

自分のデータを見せる
貸し出し処理をする
返却処理をする

担当する処理

本

「あなた(本)を貸して」と
お願いする(処理を呼び出す)

メッセージ

クラス

属性
(フィールド)

操作(振る舞い,
メソッド)

プログラムでのクラスとオブジェクトの表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

プログラムでしなければならないこと
1. クラスを定義する

それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2.オブジェクトを作る

クラスに所属する個々のオブジェクトの情報の入れ物を作成

3. オブジェクトにデータを設定する

2. で作ったオブジェクトに、具体的なデータを設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

1. クラスの定義のしかた
これまでと同じ

1ファイル1クラス

オブジェクトが持つデータ(フィールド)を変数として宣言

どのメソッドにも含まれない場所で宣言

オブジェクトが担当する処理(メソッド)を定義

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

import java.io.*;
import java.lang.*;

public class Student {
String address, name, tel;
int studentNumber, english, math, language;

}

クラス名

フィールドの宣言

メソッドの
定義

2. オブジェクトの作り方
「new クラス名()」でオブジェクトを作成し変数に代入

この作成・代入処理は、1. のクラスとは別のクラスのメソッド内で行う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();

}
}

「Student」クラスの
変数(オブジェクト名)を宣言

オブジェクトの作成と
変数への代入

「オブジェクトを作る」とは?
具体的な情報が何も設定されていない、情報の入れ物を作る、という
イメージ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

new Student()

address:
studentNumber:
english:
math:
language:

address:
studentNumber:
english:
math:
language:

出席番号1番の生徒

出席番号2番の生徒

オブジェクト作成

オブジェクト作成

具体的な値は何もなし

オブジェクトの利用(値の代入と参照)(1)
オブジェクトの作成後、フィールドに値を代入可能

「オブジェクト名.フィールド名」で普通の変数と同様に扱う

「new」として、オブジェクトを作成したクラスのメソッド内で、「オブジェクト名.フィールド名」と
いう変数を利用できる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();
info.address="2-6-1, Suginamiku...";
info.studentNumber=1;
info.english=80;

}
}

フィールドに
値を代入

オブジェクトの利用(値の代入と参照)(2)
「オブジェクト名.フィールド名」で、「フィールド名」として使えるのは

1. で定義したクラスのフィールドの変数

「オブジェクト名.フィールド名」で、「オブジェクト」「の(.)」「フィールド名」という意味

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();
info.address="2-6-1, Suginamiku...";
info.studentNumber=1;
info.english=80;

}
}

public class Student {
String address, name, tel;
int studentNumber, english, math, language;

}

オブジェクトの配列化～代入～(1)
「オブジェクト名[添え字].フィールド名」で、通常の変数と同様に扱う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

public class StudentManage {
public static void main(String[] args) {

.......
info[0].address="2-6-1, Suginamiku...";
info[0].studentNumber=1;
info[0].english=80;
.......

}
}

オブジェクトのフィールドに1つ1つ値を代入

オブジェクトの配列化～代入～(2)
フィールドに値を入れることにより、各オブジェクトの固有のデータが設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

public class StudentManage {
public static void main(String[] args) {

.......
info[0].address="2-6-1, Suginamiku...";
info[0].studentNumber=1;
info[0].english=80;
.......
info[0].address="1-1-1, Kichijoji...";
info[0].studentNumber=2;
info[0].english=93;

}
}

address: 2-6-1, Suginamiku...
studentNumber: 1
english: 80
math:
language:

address: 1-1-1, Kichijoji...
studentNumber: 2
english: 93
math:
language:

出席番号1番の生徒

出席番号2番の生徒

プログラムでのメッセージの表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

メッセージ
メッセージ = あるクラスで定義されたメソッドを呼び出すこと

「オブジェクト名.メソッド」(または「クラス名.メソッド」)の形式で呼び出し

ただし、メソッドを定義している同じクラス内で呼び出すときは、オブジェクト名や
クラス名は省略

Ex1. str.substring(m, n)

Stringクラスに定義されている「substring」というメソッドを呼び出し
(strはStringクラスのオブジェクト = String型の変数)

Ex2. Integer.parseInt(str)

Integerクラスに定義されている「parseInt」というメソッドを呼び出し
(strはStringクラスのオブジェクト = String型の変数)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

メソッドの定義
クラスに関連づけるメソッドとオブジェクトに関連づける
メソッドの2種類(内容の定義はこれまでと全く同じ)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

public static 戻り値のデータ型 メソッド名(引数) {
メソッドでの処理内容
return 処理結果;

}

クラスに関連づけるメソッドの定義のテンプレート

public 戻り値のデータ型 メソッド名(引数) {
メソッドでの処理内容
return 処理結果;

}

オブジェクトに関連づけるメソッドの定義のテンプレート

違い: 「static」キーワードが
ついているかいないか

「static」のあるなし(1)
「static」がついているメソッド(クラスメソッド)

これまで作ってきたメソッド

「クラス名.メソッド」の形式で呼び出し可能(「オブジェクト名.メソッド」の形式でも
可能)

staticつきのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドにもstaticが必要

mainメソッドから呼び出すときは、「static」がついている必要

メソッドを定義しているクラスのインスタンス変数を利用することは不可能
(クラス変数は利用可能)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

オブジェクトによって処理結果の変わらないメソッドはstaticをつけて良い
(つけないメソッドにしても良い)

「static」のあるなし(2)
「static」がついていないメソッド(インスタンスメソッド)

必ず「オブジェクト名.メソッド」の形式で呼び出し(「クラス名.メソッド」の形式では
呼び出し不可能)

staticなしのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドはstaticはついていても、ついていなくても良い

staticなしのメソッド内部で、同じクラスで定義されているフィールドは、
インスタンス変数・クラス変数とも利用可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

オブジェクトによって処理結果の変わるメソッド(同じクラスで定義されているstaticなしの
フィールドを処理に使うなど)は、必ずstaticなし

mainメソッド
「この部分を最初に実行する」という意味のメソッド

クラスメソッドの一種

「public static void main(String[] args) {」のメソッド

Javaでは、プログラムを実行したときに、まず最初にmainメソッドの「{」と「}」の間に
書かれている処理を実行

複数のクラス作成するときは、mainメソッドを作成するのは1つのクラスのみ

複数のクラスを使ってプログラムを実行するときは、「java」コマンドで指定するクラスは、
メインメソッドを持っているクラス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

オブジェクト同士でのメソッドの呼び出し
あるクラス(名前: ClassA)で定義されているメソッドを...

別のクラスから呼び出す場合

同じクラス(ClassA)から呼び出す場合: 「オブジェクト名.」や「クラス名.」は不要

メソッド名 + 引数のみでOK

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

メソッドがインスタンスメソッドの場合: ClassAのオブジェクト名.メソッド

メソッドがクラスメソッドの場合: ClassA.メソッド

メソッドの呼び出し(例)(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

※クラス変数は、宣言と同時に値を代入してOK

メソッドの呼び出し(例)(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

インスタンスメソッドの定義

インスタンスメソッドの呼び出し

メソッドの呼び出し(例)(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

クラスメソッドの定義

クラスメソッドの呼び出し

コンパイルと実行のしかた
コンパイル

「javac」の後に、ファイル名をスペースでつなげて複数のファイルをコンパイル

または、「*」でそのフォルダに保存されているJavaファイルすべてをコンパイル

プログラムに関係ないJavaファイルもコンパイルされる。関係ないJavaファイルに
コンパイルエラーがあれば、コンパイルが完了しないので注意

実行

「java」の後に、「public static void main」が
書かれているファイル名(拡張子なし)を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

% javac StudentManage.java Student.java

% java StudentManage

% javac *.java

継承

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

継承～「クラス」の親子関係～(1)
「本」クラスの他に、「雑誌」クラスを考えると...

「雑誌」クラスは「本」クラスの一部

「雑誌」は「本」でもある(「雑誌」は、「本」の少し細かい分類での名前)

「雑誌」クラスは、「タイトル」や「著者」などの「本」クラスと同じ属性(フィールド)を持つ

「雑誌」クラスは、「データを見せる」、「貸し出し処理をする」などの「本」クラスと
同じ操作(メソッド)を持つ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

「雑誌」クラスは「本」クラスの性質(属性と操作)を
そのまま持っている(受け継いでいる)

あるクラスが別のクラスの性質を受け継いでいるという関係が、
「クラスの親子関係」

継承～「クラス」の親子関係～(2)
継承: あるクラスが、別のクラスの属性と操作をそのまま受け継いで
いるという関係

受け継がせる側: 親クラス(スーパークラス)

受け継ぐ側: 子クラス(サブクラス)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

雑誌(子クラス)

タイトル
著者
巻数・号数

データを見せる
貸し出し処理をする
返却処理をする
新刊の棚に1ヶ月置く

本(親クラス)

タイトル
著者

データを見せる
貸し出し処理をする
返却処理をする

受け継ぐ

受け継ぐ

継承の使い方～拡張～
クラスAの様々なバリエーションを作りたい場合

クラスAを親クラスとして、子クラスB, Cを作る

クラスBに、Bのために独自の属性や操作を持たせる

クラスCに、Cのために独自の属性や操作を持たせる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

クラスA, B, Cに共通な属性・操作と、クラスB, C独自の
属性・操作を明確に分離できるので、保守性が良くなる

クラスB, C独自の属性や操作をクラスAにまとめて持たせると、クラスAが大きくなって保守性が悪くなる

機能などの変更のときに、どの部分を修正すれば
良いかがわかりやすくなる

継承の使い方～拡張～(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 34

雑誌(親クラス: 「本」)

タイトル
著者
巻数・号数

データを見せる
貸し出し処理をする
返却処理をする
新刊の棚に1ヶ月置く

専門書(親クラス: 「本」)

タイトル
著者
専門分野

データを見せる
貸し出し処理をする
返却処理をする
関係学科に入荷の通知をする

「専門書」クラスにのみ必要
(親クラスからの拡張部分)

「雑誌」クラスにのみ必要
(親クラスからの拡張部分)

親クラス(「本」クラス)から継承した属性と操作(「専門書」・「雑誌」にも
必要な共通の属性と操作, 「専門書」・「雑誌」クラスでは定義不要)

継承の使い方～抽象化～
共通の属性や操作を持つ複数のクラスの共通部分のみをまとめたい
場合

クラスB, Cの共通の属性と操作をまとめてクラスAを作る

クラスAがクラスB, Cの親クラス

クラスB, CがクラスAの子クラス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 35

共通の部分が1箇所にまとまるので、保守性が良くなる

共通の属性や操作をそれぞれのクラスで持っていると、共通部分を
変更するとそれぞれのクラスを同じように修正する必要が出てくる

共通する属性や操作を「親クラス」としてまとめると、
共通部分の変更は親クラスのみの修正ですむ

継承の使い方～抽象化～(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 36

雑誌

タイトル
著者
巻数・号数

データを見せる
貸し出し処理をする
返却処理をする
新刊の棚に1ヶ月置く

専門書

タイトル
著者
専門分野

データを見せる
貸し出し処理をする
返却処理をする
関係専攻に入荷の通知をする

「専門書」クラスと「雑誌」クラスで共通の属性と操作

まとめて「本」クラスを作成すると、変更があっても
対処しやすい

継承の使い方～その他～
子クラスのオブジェクトは、親クラスのオブジェクトとして扱うことも可能

「専門書」クラスのオブジェクトは、「本」クラスのオブジェクトとしても扱うことが可能

「専門書」・「雑誌」などの区別に関係なく共通の処理をしたい場合には、「本」クラスの
オブジェクトとして扱う

「専門書」・「雑誌」などで別々の処理をしたい場合には、それぞれのクラスの
オブジェクトとして扱う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 37

共通の処理をしたい場合には、子クラスごとに処理を
記述する必要がない

プログラムでの継承の表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 38

継承のしかた
クラス宣言を記述するときに、クラス名の後に「extends 親クラス名」と書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

import java.io.*;
import java.lang.*;

public class Magazine extends Book {
int volume, number;

public int getVolume() {
return volume;

}
}

クラス名
(子クラス)

継承するクラス名
(親クラス名)

通常のクラスと、
書く内容は同じ

継承すると...(1)
親クラスに定義されているフィールドやメソッドが、子クラスでも自動的に
定義されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 40

public class Magazine extends Book {
int volume, number;

String title, author;

public String getTitle() {
return title;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Magazine mag = new Magazine();

mag.title = "今週の東女生";
mag.author = "東京子";

String magTitle = mag.getTitle();
}

}

Bookクラスに定義されているものを継承
 定義しているのはBookクラスにおいてのみ
 Magazineクラスでは実際には記述なし

継承

継承すると...(2)
親クラスに定義されているフィールドやメソッドが、子クラスでも自動的に
定義されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

public class Magazine extends Book {
int volume, number;

String title, author;

public String getTitle() {
return title;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Magazine mag = new Magazine();

mag.title = "今週の東女生";
mag.author = "東京子";

String magTitle = mag.getTitle();
}

}

Bookクラスに定義されているものを継承
 定義しているのはBookクラスにおいてのみ
 Magazineクラスでは実際には記述なし

継承

継承すると...(3)
親クラスに定義されているフィールドやメソッドが、子クラスでも自動的に
定義されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

public class Magazine extends Book {
int volume, number;

String title, author;

public String getTitle() {
return title;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Magazine mag = new Magazine();

mag.title = "今週の東女生";
mag.author = "東京子";

String magTitle = mag.getTitle();
}

}

継承

Magazineクラスに定義
していなくても利用可能

Magazineクラスに定義
していなくても利用可能

オーバーライド

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 43

オーバーライド
親クラスが持っている操作(メソッド)の処理の内容を子クラスで定義
しなおすこと

親クラスが持っている操作(メソッド)は、原則子クラスにそのまま継承
(子クラスで全く同じ処理内容で継承)

子クラスで、親クラスとは違う内容にしたい場合に定義しなおすことが可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 44

親クラスで定義されているメソッドを、
同じ名前と同じ引数、同じ戻り値で、子クラスで定義しなおすこと

オーバーライド(例)
「雑誌」クラスでは、雑誌名と巻数を組み合わせて「データを見せる」
メソッドの戻り値とする

「データを見せる」メソッドの処理内容を「本」クラスとは違う処理に定義

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 45

本

タイトル
著者

データを見せる
貸し出し処理をする

雑誌

タイトル
著者

データを見せる
貸し出し処理をするオーバーライド(同じ名前、

同じ引数、同じ戻り値で
処理内容を違うものに定義)

プログラムでのオーバーライドの表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 46

オーバーライドするには...
親クラスに定義されているフィールドやメソッドが、子クラスでも自動的に
定義されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 47

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

継承

オーバーライド
 同じメソッド名
 同じ引数
 同じ戻り値のデータ型

で、メソッドの処理内容を定義しなおし

ポリモーフィズム

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 48

ポリモーフィズム(多相性, 多態性)
同じ名前の操作(メソッド)を異なる形にして呼び出すこと

オーバーライドなどによって実現

ソフトウェアの実行時になって初めてどの処理が呼び出されるか決定(動的結合)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 49

呼び出す操作の内容が違っても、呼び出し側の
処理が共通化できる

 操作の呼び出し側は、どのクラスのオブジェクトの操作を 呼び出しているかを
意識しなくてすむ

 操作を呼び出した結果は、それぞれの処理内容に 応じたものになっている

ポリモーフィズム(例)(1)
BookクラスのgetTitleメソッドは、本のタイトルがそのまま戻り値

オーバーライドにより、MagazineクラスのgetTitleメソッドは、雑誌の
タイトル+巻・号数が戻り値

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 50

ポリモーフィズム(例)(2)
子クラスのオブジェクトは、親クラスのオブジェクトとして扱うことも可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 51

public class Magazine extends Book {
... 略 ...

}

public class Book {
... 略 ...

}

public class Library {
public static void main(String[] args) {

try {
Book entry[] = new Book[100];
File readFile = new File("BookDatabase.csv")
FileReader fr = new FileReader(readFile);
BufferedReader br = new BufferedReader(fr);
while (br.ready()) {

if (line.indexOf("Book") == 0) {
entry[i] = new Book();

} else {
entry[i] = new Magazine();

}
}

}
catch(IOException e) {
}

}
}

Bookクラスのオブジェクトを作成し、
Bookクラスの配列に代入

Magazineクラスのオブジェクトを
作成し、Bookクラスの配列に代入

(このような処理をしてもOK)

ポリモーフィズム(例)(2)
子クラスのオブジェクトは、親クラスのオブジェクトとして扱うことも可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 52

public class Magazine extends Book {
... 略 ...

}

public class Book {
... 略 ...

}

public class Library {
public static void main(String[] args) {

try {
Book entry[] = new Book[100];
File readFile = new File("BookDatabase.csv")
FileReader fr = new FileReader(readFile);
BufferedReader br = new BufferedReader(fr);
while (br.ready()) {

if (line.indexOf("Book") == 0) {
entry[i] = new Book();

} else {
entry[i] = new Magazine();

}
}

}
catch(IOException e) {
}

}
}

MagazineクラスのオブジェクトもBook
クラスのオブジェクトとして扱うことができる

ポリモーフィズム(例)(3)
本のタイトルを調べるとき…

ただの本を調べる?

雑誌を調べる?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 53

そのときどきによって違う
=プログラムの実行時にしかわからない
=プログラムを作るときには決められない

BookクラスもMagazineクラスもgetTitleメソッドを所有
MagazineクラスはBookクラスの子クラス

ただの本のタイトルを調べるときも、雑誌のタイトルを調べるときも、
どちらもBookクラスのオブジェクトとして扱えば…?

Ex. ファイルから何冊もの本の情報を読み込んだとき
Bookクラスの配列に1冊ずつ情報を格納
→配列の何番目はただの本で、何番目が雑誌かは、プログラム作成時にはわからない

ポリモーフィズム(例)(4)
プログラムを作るとき

BookクラスのオブジェクトのgetTitleメソッドを呼び出すように、プログラムを記述

プログラムを実行するとき

プログラムは、オブジェクトがMagazineの場合、MagazineのgetTitleメソッドを
呼び出し

雑誌のタイトル+巻数・号数という戻り値が返される

プログラムは、オブジェクトがBookの場合、BookのgetTitleメソッドを呼び出し

タイトルがそのまま戻り値として返される

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 54

プログラムを作るときの処理の記述を簡単にできる
(本来は、それぞれで場合分けをして記述する必要がある)

プログラムでのポリモーフィズムの表現

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 55

ポリモーフィズムするには...(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 56

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

継承 public class Library {
public static void main(String[] args) {

Book enrty[] = new Book[100];
.... 略
int i;
for (i = 0; i < 100; i++) {

System.out.println(entry[i].getTitle());
}

}
}

ポリモーフィズムするには...(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 57

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Book enrty[] = new Book[100];
.... 略
int i;
for (i = 0; i < 100; i++) {

System.out.println(entry[i].getTitle());
}

}
}

 ファイルから本の情報を読み込むなどしている
 配列entryには、Bookクラスのオブジェクトと

Magazineクラスのオブジェクトが入り混じっている

ポリモーフィズムするには...(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 58

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Book enrty[] = new Book[100];
.... 略
int i;
for (i = 0; i < 100; i++) {

System.out.println(entry[i].getTitle());
}

}
}

オーバーライド
 同じメソッド名
 同じ引数
 同じ戻り値のデータ型

で、メソッドの処理内容を定義しなおし

ポリモーフィズムするには...(4)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 59

public class Magazine extends Book {
int volume, number;

public String getTitle() {
String magTitle = title + volume + "巻" + number + "号";
return magTitle;

}
}

public class Book {

String title, author;

public String getTitle() {
return title;

}
}

public class Library {
public static void main(String[] args) {

Book enrty[] = new Book[100];
.... 略
int i;
for (i = 0; i < 100; i++) {

System.out.println(entry[i].getTitle());
}

}
}

配列entryにBookクラスのオブジェクトが入っているときに呼び出される

配列entryにMagazineクラスのオブジェクトが入っているときに呼び出される

やってみよう!(1)
スライドp. 55のプログラムを写して、標準出力の結果が本当に違うか
どうか確認すること

配列の個数は5個程度で、プログラム内でタイトルや巻・号数を代入すること

ファイル入力ではなく、プログラム内で値を入力して良い

配列の1つ1つの要素で、BookクラスのオブジェクトとMagazineクラスの
オブジェクトを作り分けること

Ex. 配列の0番目はBookクラス、1番目はMagazineクラス、2番目はBookクラス、...の
ように分けること

Ex. MagazineクラスのオブジェクトのBookクラスへの代入方法

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 60

Magazine mag = new Magazine();
mag.title = "今週の東女生";
mag.volume = 1;
entry[3] = mag;

やってみよう!(2)
以下の3つのクラスを持つプログラムを作ること

1つ目のクラス: 授業の資料のページの「NumberContents.java」をダウンロード

2つ目のクラス: NumerContentsクラスを継承したクラス

3つ目のクラス: 下記の処理をするクラス

標準入力で2つの数を入力し、2つ目のクラスのフィールドに代入

2つ目のクラスで継承しているcalculateメソッドを使い、入力した数の合計を
標準出力で出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 61

2つ目のクラスには、calculateメソッドを定義していないはずなのに、
calculateメソッドを使って合計を計算できるかを確認すること

やってみよう!(3)
以下の3つのクラスを持つプログラムを作ること

1つ目のクラス: 授業の資料のページの「NumberContents.java」をダウンロード

2つ目のクラス: NumberContentsクラスを継承し、calculateメソッドを
オーバーライドしたクラス

オーバーライド内容: 戻り値を2つのフィールドの数の掛け算とするように変更

3つ目のクラス: 下記の処理をするクラス

標準入力で2つの数を入力し、2つ目のクラスのフィールドに代入

2つ目のクラスでオーバーライドしたcalculateメソッドを使うこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 62

オーバーライドすることにより、NumberContentsのcalculateメソッドと違う結果(掛け算)が出る
(ポリモーフィズムがきちんとできている)ことを確認すること

やってみよう!(4)
下記の3つのクラスを持つプログラム

1つ目のクラス: 授業の資料のページの「StringModification.java」をダウンロード

2つ目のクラス: StringModificationクラスを継承したクラス

3つ目のクラス: 下記の処理をするクラス

標準入力で入力した文字列を、2つ目のクラスの「text」というフィールド変数に代入

2つ目のクラスで継承しているlengthメソッドを使い、入力した文字列の長さを標準出力で
出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 63

2つ目のクラスには、lengthメソッドを定義していないはずなのに、
lengthメソッドを使って長さを調べることができるかを確認すること

やってみよう!(5)
下記の2つのクラスを持つプログラム

1つ目のクラス: 授業の資料のページの「StringModification.java」をダウンロード

2つ目のクラス: Stringクラスを継承し、substringメソッドをオーバーライドしたクラス

オーバーライド内容
引数: int型の数を2つ(mとn)

戻り値: 「m番目の文字はx、n番目の文字はyです」という文字列(xとyはcharAtメソッドを使って調べるこ
と)

3つ目のクラス: 下記の処理をするクラス

標準入力で入力した文字列を、2つ目のクラスの「text」というフィールド変数に代入

2つ目のクラスでオーバーライドしたsubstringメソッドを使うこと
引数mとnも、標準入力で入力すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 64

オーバーライドすることにより、これまで使ってきたsubstringメソッドと
違う結果が出る(ポリモーフィズムがきちんとできている)ことを確認すること

