
1

情報処理技法
(Javaプログラミング)2

第4回
オブジェクト指向って?

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

第4回の内容
プログラミングの種類

オブジェクト指向とは?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

前回の出席課題の解答
 このプログラムは、自分の名前と相手の名前を入力し、挨拶を出力するプログラムです。(処理)の
部分にどのような処理が入るか、下記の選択肢から最も適切なものを選びなさい。

public static void sayHello(String you, String me) {
(処理)

}

public static void main(String[] args) {
String you, me;
try {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

// 自分の名前の入力
System.out.print("あなたの名前を入力してください> ");
me = br.readLine();

// 挨拶の相手のの名前の入力
System.out.print("挨拶をする人の名前を入力してください > ");
you = br.readLine();

// 挨拶処理
sayHello(you, me);

}
catch(IOException e) {
System.out.println("標準入力ができませんでした");

}
}

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2014 All rights reserved. 3

(a)
String message;
message = "Hello, " + you + "! My name is " + me + "!";
return message;

(b)
System.out.println("Hello, " + you + "!");
System.out.println("My name is " + me + "!");

(c)
String message;
message = "Hello, " + you + "! My name is " + me + "!";

(d)
String message;
message = "Hello, " + you + "! My name is " + me + "!";
return message;
System.out.println(message);

選択肢プログラム

解答: b

プログラミングの種類
関数型言語

手続き型

オブジェクト指向言語

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

関数型言語
数学的な関数のみをもとにして記述するプログラム言語

一度変数に値が与えられれば、その変数の値は変化しない

計算結果を引数とする、関数呼び出しのみで計算を行う

プログラミング言語: Lisp, Schemeなど

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

手続き型言語
記述された命令を上から順に実行していくプログラム言語

処理の結果に応じて変数の値が変化

プログラミング言語: C言語, BASIC, Pascalなど

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

2

オブジェクト指向言語
「もの」と「もの」との関係に重点を置いて記述するプログラミング言語

ある「もの」に対して、それが持つ情報と、その「もの」が行う作業を記述する

ある「もの」と別の「もの」とのコミュニケーションを記述することで、プログラムを
動作させる

プログラミング言語: SmallTalk, C++, C#など

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

Javaは?
オブジェクト指向言語

これまでの言語にはない、完全なオブジェクト指向を実現した言語

「Write Once, Run Anywhere」(一度記述すればどこでも動作する)が
キャッチコピー

一度記述すれば、OS等の環境が異なるコンピュータでもプログラムは動作する

他のプログラミング言語では、OS等が違うとコンパイル・実行ができないこともある

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

オブジェクト指向の基礎

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

クラスとオブジェクト(1)
オブジェクト指向: 「もの」を中心してソフトウェアを構築する考え方

「もの」: オブジェクト(インスタンスとも)

1つ1つの具体的な実物

名前を示されたとき、「これ」とそのものを特定できるもの

「もの」の分類: クラス

実物を分類したカテゴリ(実物の総称のような概念)

名前を示されたとき、その概念にあてはまるものがいくつか存在するもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

※「オブジェクト」と「インスタンス」は厳密にはちがうもの

クラスとオブジェクト(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

「学生」というカテゴリ(クラス)に分類

「本」というカテゴリ(クラス)に分類

図書館蔵書ID 0002:
マーチン・ファウラー著, 羽生田栄一監訳:
UMLモデリングのエッセンス, 翔泳社

図書館蔵書ID 0001:
児玉公信著: UMLモデリングの本質,
日経BP社 実物の本 =オブジェクト

学生番号 k14x1001: 東京子

学生番号 k13x1001: 善福寺花子
実物の学生 =オブジェクト

クラスとオブジェクト(3)
クラス: 同じ属性と操作を持つオブジェクトの集合

属性(フィールド):オブジェクトが持つ情報(データ)

操作(振る舞い, メソッド): オブジェクトが担当する処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

学生

学生番号
住所
成績

授業に出席する
レポートを書く

本

タイトル
著者

データを見せる
貸し出し処理をする
返却処理をする

犬

名前
飼い主

遊ぶ
寝る
えさを食べる

クラス名 属性(フィールド) 操作(メソッド)

クラスの例

3

クラスとオブジェクト(4)
1つのクラスにオブジェクトを所属させることができる

クラス: 実物を分類したカテゴリのようなもののため

オブジェクト同士は、それぞれのクラスに定義された操作(処理)を
呼び出す

操作(処理)の呼び出しを「メッセージ」と呼ぶ

メッセージを組み合わせてオブジェクト同士がコミュニケーションすることで
プログラム全体が成り立つ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

属性・操作・メッセージ(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

利用者

タイトル
著者
出版社

持っているデータ

自分のデータを見せる
貸し出し処理をする
返却処理をする

担当する処理

本

「あなた(本)を貸して」と
お願いする(処理を呼び出す)

メッセージ

クラス

属性
(フィールド)

操作(振る舞い,
メソッド)

プログラムでのクラスとオブジェクト

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

1. クラスを定義する

それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2. オブジェクトを作る

クラスに所属する個々のオブジェクトの情報の入れ物を作成

3. オブジェクトにデータを設定する

2. で作ったオブジェクトに、具体的なデータを設定

プログラムでしなければならないこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

1. クラスの定義のしかた
これまでと同じ

1ファイル1クラス

オブジェクトが持つデータ(フィールド)を変数として宣言

どのメソッドにも含まれない場所で宣言

オブジェクトが担当する処理(メソッド)を定義
import java.io.*;
import java.lang.*;

public class Student {
String address, name, tel;
int studentNumber, english, math, language;

}

クラス名

フィールドの宣言

メソッドの
定義

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

プログラムでしなければならないこと
1. クラスを定義する

それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2. オブジェクトを作る

クラスに所属する個々のオブジェクトの情報の入れ物を作成

3. オブジェクトにデータを設定する

2. で作ったオブジェクトに、具体的なデータを設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

4

2. オブジェクトの作り方
「new クラス名()」でオブジェクトを作成し変数に代入

この作成・代入処理は、1. のクラスとは別のクラスのメソッド内で行う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();

}
}

「Student」クラスの
変数(オブジェクト名)を宣言

オブジェクトの作成と
変数への代入

「オブジェクトを作る」とは?
具体的な情報が何も設定されていない、情報の入れ物を作る、という
イメージ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

new Student()

address:
studentNumber:
english:
math:
language:

address:
studentNumber:
english:
math:
language:

出席番号1番の生徒

出席番号2番の生徒

オブジェクト作成

オブジェクト作成

具体的な値は何もなし

複数のオブジェクトの扱い～配列～(1)
オブジェクト: プログラムでの表記は変数と同じ

= これまでのintやStringと同様に配列の宣言が可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
.......
info[0] = new Student();
info[1] = new Student();
.......

}
} 「Student」クラスの

オブジェクトを50個分宣言

複数のオブジェクトの扱い～配列～(2)
これまでと同様、「オブジェクト名[添え字] = new クラス名();」で作成

配列で扱う個々のオブジェクトの作成を忘れないこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
.......
info[0] = new Student();
info[1] = new Student();
.......

}
}

オブジェクトを1つ1つ作成(for文や
while文でまとめて作成してもOK)

「static」キーワード
フィールドの変数に「static」というキーワードをつけて宣言することがある

Ex1. static String schoolName;

Ex2. static int classNumber;

staticなしのフィールド(インスタンス変数)

オブジェクトごとに値が異なるフィールドを表現するために利用

Ex. 1人1人の生徒の住所や電話番号、試験の成績など

staticつきのフィールド(クラス変数)

どのオブジェクトも値が同じであるフィールドを表現するために利用

Ex. 学校の名前など

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

プログラムでしなければならないこと
1. クラスを定義する

それぞれの「もの」について、内容を定義する

どのような名前か?

どのような情報(属性)を持っているか?

どのような操作(メソッド)を持っているか?

2. オブジェクトを作る

クラスに所属する個々のオブジェクトの情報の入れ物を作成

3. オブジェクトにデータを設定する

2. で作ったオブジェクトに、具体的なデータを設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

5

オブジェクトの利用(値の代入と参照)(1)
オブジェクトの作成後、フィールドに値を代入可能

「オブジェクト名.フィールド名」で普通の変数と同様に扱う

「new」として、オブジェクトを作成したクラスのメソッド内で、「オブジェクト名.フィールド名」と
いう変数を利用できる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();
info.address="2-6-1, Suginamiku...";
info.studentNumber=1;
info.english=80;

}
}

フィールドに
値を代入

オブジェクトの利用(値の代入と参照)(2)
「オブジェクト名.フィールド名」で、「フィールド名」として使えるのは

1. で定義したクラスのフィールドの変数

「オブジェクト名.フィールド名」で、「オブジェクト」「の(.)」「フィールド名」という意味

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

public class StudentManage {
public static void main(String[] args) {

Student info;
.......
info = new Student();
info.address="2-6-1, Suginamiku...";
info.studentNumber=1;
info.english=80;

}
}

public class Student {
String address, name, tel;
int studentNumber, english, math, language;

}

オブジェクトの配列化～代入～(1)
「オブジェクト名[添え字].フィールド名」で、通常の変数と同様に扱う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

public class StudentManage {
public static void main(String[] args) {

.......
info[0].address="2-6-1, Suginamiku...";
info[0].studentNumber=1;
info[0].english=80;
.......

}
}

オブジェクトのフィールドに1つ1つ値を代入

オブジェクトの配列化～代入～(2)
フィールドに値を入れることにより、各オブジェクトの固有のデータが設定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

public class StudentManage {
public static void main(String[] args) {

.......
info[0].address="2-6-1, Suginamiku...";
info[0].studentNumber=1;
info[0].english=80;
.......
info[0].address="1-1-1, Kichijoji...";
info[0].studentNumber=2;
info[0].english=93;

}
}

address: 2-6-1, Suginamiku...
studentNumber: 1
english: 80
math:
language:

address: 1-1-1, Kichijoji...
studentNumber: 2
english: 93
math:
language:

出席番号1番の生徒

出席番号2番の生徒

オブジェクトの配列化～利用～
オブジェクトを配列にしたときも、添え字の考え方はこれまでと全く同じ

添え字は0から数え始める

0～[宣言した数-1]の番号の添え字を利用できる

..., -3, -2, -1や、[宣言した数], [宣言した数+1], [宣言した数+2], ...は使えない

高校の生徒などの場合、添え字と出席番号を対応させると扱いやすい

Ex. 出席番号1番の生徒は添え字0, 出席番号2番の生徒は添え字1, ...

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

メッセージのやり取り

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

6

メッセージ
メッセージ = あるクラスで定義されたメソッドを呼び出すこと

「オブジェクト名.メソッド」(または「クラス名.メソッド」)の形式で呼び出し

ただし、メソッドを定義している同じクラス内で呼び出すときは、オブジェクト名や
クラス名は省略

Ex1. str.substring(m, n)

Stringクラスに定義されている「substring」というメソッドを呼び出し
(strはStringクラスのオブジェクト = String型の変数)

Ex2. Integer.parseInt(str)

Integerクラスに定義されている「parseInt」というメソッドを呼び出し
(strはStringクラスのオブジェクト = String型の変数)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

メッセージのやり取りをするには
1. 各クラスでメソッドを定義する

2. オブジェクト同士でメソッドを呼び出しあう

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 34

メソッドの定義
クラスに関連づけるメソッドとオブジェクトに関連づけるメソッドの2種類

(内容の定義はこれまでと全く同じ)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 35

public static 返り値のデータ型 メソッド名(引数) {
メソッドでの処理内容
return 処理結果;

}

クラスに関連づけるメソッドの定義のテンプレート

public 返り値のデータ型 メソッド名(引数) {
メソッドでの処理内容
return 処理結果;

}

オブジェクトに関連づけるメソッドの定義のテンプレート

違い: 「static」キーワードが
ついているかいないか

「static」のあるなし(1)
「static」がついているメソッド(クラスメソッド)

これまで作ってきたメソッド

「クラス名.メソッド」の形式で呼び出し可能(「オブジェクト名.メソッド」の形式でも
可能)

staticつきのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドにもstaticが必要

mainメソッドから呼び出すときは、「static」がついている必要

メソッドを定義しているクラスのインスタンス変数を利用することは不可能
(クラス変数は利用可能)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 36

オブジェクトによって処理結果の変わらないメソッドはstaticをつけて良い
(つけないメソッドにしても良い)

「static」のあるなし(2)
「static」がついていないメソッド(インスタンスメソッド)

必ず「オブジェクト名.メソッド」の形式で呼び出し(「クラス名.メソッド」の形式では
呼び出し不可能)

staticなしのメソッド内部で、同じクラスで定義されているメソッドを呼び出すときは、
そのメソッドはstaticはついていても、ついていなくても良い

staticなしのメソッド内部で、同じクラスで定義されているフィールドは、
インスタンス変数・クラス変数とも利用可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 37

オブジェクトによって処理結果の変わるメソッド(同じクラスで定義されているstaticなしの
フィールドを処理に使うなど)は、必ずstaticなし

mainメソッド
「この部分を最初に実行する」という意味のメソッド

クラスメソッドの一種

「public static void main(String[] args) {」のメソッド

Javaでは、プログラムを実行したときに、まず最初にmainメソッドの「{」と「}」の間に
書かれている処理を実行

複数のクラス作成するときは、mainメソッドを作成するのは1つのクラスのみ

複数のクラスを使ってプログラムを実行するときは、「java」コマンドで指定するクラスは、
メインメソッドを持っているクラス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 38

7

オブジェクト同士でのメソッドの呼び出し
あるクラス(名前: ClassA)で定義されているメソッドを...

別のクラスから呼び出す場合

同じクラス(ClassA)から呼び出す場合: 「オブジェクト名.」や「クラス名.」は不要

メソッド名 + 引数のみでOK

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

メソッドがインスタンスメソッドの場合: ClassAのオブジェクト名.メソッド

メソッドがクラスメソッドの場合: ClassA.メソッド

メソッドの呼び出し(例)(1)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 40

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

※クラス変数は、宣言と同時に値を代入してOK

メソッドの呼び出し(例)(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

インスタンスメソッドの定義

インスタンスメソッドの呼び出し

メソッドの呼び出し(例)(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

public class Student {
String address, name, tel;
int studentNumber, english, math, language;
static String schoolName = "善福寺高校";

public void setEnglish(int score) {
english = score;

}
public static String getSchoolName() {

return schoolName;
}
... 略 ...

}

public class StudentManage {
public static void main(String[] args) {

Student[] info = new Student[50];
String scName;

info[0] = new Student();

info[0].setEnglish(80);

scName = Student.getSchoolName();
... 略 ...

}
}

クラスメソッドの定義

クラスメソッドの呼び出し

コンストラクタ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 43

特殊なメソッド～コンストラクタ～(1)
コンストラクタ: オブジェクトを作成すると同時に実行される特殊なメソッド

通常のメソッドとの違い

名前が必ずクラス名と同じ

返り値のデータ型の定義なし

返り値を返すためのreturn文はなし

「static」キーワードをつけることは不可

通常のメソッドと同じもの

引数を定義(なくても良い)

処理内容の記述方法は同じ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 44

8

特殊なメソッド～コンストラクタ～(2)
定義方法: 「public クラス名(引数のリスト) {...}」

引数のリストはなくてもよい

「{」から「}」の間に、オブジェクトを作成すると同時に実行される処理内容を
記述する

オブジェクトを作成するとき、「new クラス名() ;」とするのは、コンストラクタを
呼び出している、ということ

コンストラクタでよく処理するもの

フィールドの値の設定

GUIを扱うクラスの場合、GUIのウィンドウの作成処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 45

コンストラクタの例

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 46

同じ意味

public class Student {
String number, circle;
int score;
public Student(String n, int s, String c) {

number = n;
score = s;
circle = c;

}
}

クラスの定義

Student member;

member = new Student("k13x1001", 80, "オーケストラ");

Student member;
member = new Student();
member.number = “k13x1001”;
member.score = 80;

member.circle = "オーケストラ"

オブジェクト作成例

コンストラクタ

コンパイルと実行

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 47

コンパイルと実行のしかた
コンパイル

「javac」の後に、ファイル名をスペースでつなげて複数のファイルをコンパイル

または、「*」でそのフォルダに保存されているJavaファイルすべてをコンパイル

プログラムに関係ないJavaファイルもコンパイルされる。関係ないJavaファイルに
コンパイルエラーがあれば、コンパイルが完了しないので注意

実行

「java」の後に、「public static void main」が
書かれているファイル名(拡張子なし)を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 48

% javac StudentManage.java Student.java

% java StudentManage

% javac *.java

やってみよう!
下記の2つのクラスを持つプログラム

1つ目のクラス: 生徒クラス

名前と出席番号、5教科の試験の得点を入れるフィールドを持つ

5教科の平均点を計算し、返り値とするメソッドを持つ

2つ目のクラス: 処理クラス

生徒クラスのオブジェクトに5教科の試験の得点を設定する

生徒クラスのメソッドを使い、5教科の試験の平均点を計算する

ケーキクラスを作成し、ケーキの名前と値段をコンストラクタの引数として
与え、コンストラクタの中でケーキの名前と値段をフィールドに代入する
プログラム

代入した結果を標準出力に出力すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 49

