
情報処理技法
(Javaプログラミング)2

第10回
操作に対して処理が行われるGUI(2)

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

第10回の内容
 ボタンを押したときのウィンドウ操作

入力された情報を次のウィンドウに送るには?
 GUIでのファイル操作

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

前回の復習問題の解答(1)
 下図のウィンドウについて、レイアウトマネージャだけで部品を配置するとき、下記の点に
ついて考えて答えなさい。ただし、レイアウトマネージャは、授業で説明したBorderLayout・
GridLayout・FlowLayoutのどれかとする。
 JFrameにどのレイアウトマネージャを設定するか
 どの部品をJPanelでグループ化し、そのJPanelにはどのレイアウトマネージャを設定するか
※部品をBorderLayoutのJFrameまたはJPanelに配置するときには、その部品を東・西・南・北・中央の
どの位置に配置するかも答えること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3

前回の復習問題の解答(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

 JPanelを3つ用意(panel1, panel2, panel3とする)
 JFrameにBorderLayoutを設定

 JLabelをJFrameの北に配置
 panel1をJFrameの中央に配置
 panel3をJFrameの南に配置

 panel1にBorderLayoutを設定
 JScrollPaneをpanel1の中央に配置
 panel2をpanel1の南に配置

 JListをJScrollPaneに貼り付け
 panel2にGridLayout(3, 2)またはFlowLayoutを設定

 5つのJRadioButtonをpanel2に配置
 panel3にFlowLayoutを設定

 2つのJButtonをpanel3に配置

解答例1:

前回の復習問題の解答(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

 JPanelを3つ用意(panel1, panel2, panel3とする)
 JFrameにBorderLayoutを設定

 panel1をJFrameの中央に配置
 panel3をJFrameの南に配置

 panel1にBorderLayoutを設定
 JLabelをpanel1の北に配置
 JScrollPaneをpanel1の中央に配置
 panel2をpanel1の南に配置

 JListをJScrollPaneに貼り付け
 panel2にGridLayout(3, 2)またはFlowLayoutを設定

 5つのJRadioButtonをpanel2に配置
 panel3にFlowLayoutを設定

 2つのJButtonをpanel3に配置

解答例2:

前回の復習

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

1. 利用者がGUIの部品を操作する
 「ボタンを押す」、「キーボードのキーを押す」、「マウスを動かす」などの

操作内容のことを「(ユーザ)イベント ((user) event)」と呼ぶ
 操作が行われることを、「イベントが発生する」と呼ぶ

2. プログラムが、GUIの部品が操作されたことを知る
 GUIの部品が操作されたことをプログラムが知るための機能を

「リスナ (Listener)」と呼ぶ

3. 操作内容に応じて、決められた処理をする

GUIプログラムが動くしくみ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

1. GUIの部品のうち、どの部品でイベントが起こったときに処理を行うかを
決定

2. その部品でどのようなイベントが起こるのかを決定
 ボタンを「押す」、入力フィールドで「Enterキーを押す」、などのイベントの種類を

決定する

 1つの部品で発生するイベントは1つとは限らない

GUIに処理を付加するには?(1)

ボタン

1つの部品でいくつかのイベントが
発生することもあり

マウスの左ボタンを
クリックする

キーボードの
Enterキーを押す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

3. プログラムで、利用するイベントを宣言
4. 目的の部品に、イベントに対応するリスナを登録

 リスナには多くの種類

 部品にどのリスナを登録するかで、どのイベントを受け取ることができるかが決定

GUIに処理を付加するには?(2)

イベントに対応するリスナをGUIの部品に登録する

ボタン

マウスのボタンの押下を
感知するためのリスナ

キーボードのキーの押下を
感知するためのリスナ

どちらのリスナを使う?
(何のイベントが発生する?)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

5. イベントが発生したときの処理内容のプログラムを記述
 処理内容は、メソッドの中に書く

 処理内容を書くメソッド(メソッドの名前や引数)は、リスナによって決められている

GUIに処理を付加するには?(3)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

GUIプログラムのカタチ(処理つき)(1)
import java.awt.event.*;
import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.
イベントが発生する部品の変数名.addリスナの名前(this);
.

}
public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}
public static void main(String[] args) {

new クラス名();
}

}

イベントが発生したときの処理内容を書く領域

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

import java.awt.event.*;
import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.
イベントが発生する部品の変数名.addリスナの名前(this);
.

}
public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}
public static void main(String[] args) {

new クラス名();
}

}

GUIプログラムのカタチ(処理つき)(2)

イベントが発生したときの処理内容を書く領域

 リスナやイベントは、Javaでのクラスの一種
 このJavaファイルで、リスナやイベントを利用する、
というパッケージ宣言

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

import java.awt.event.*;
import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.
イベントが発生する部品の変数名.addリスナの名前(this);
.

}
public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}
public static void main(String[] args) {

new クラス名();
}

}

GUIプログラムのカタチ(処理つき)(3)

イベントが発生したときの処理内容を書く領域

 発生するイベントに対応するリスナを宣言する
 「implements」で、一種の継承を意味する

(リスナは、GUIのクラスに継承させることが多い)

※「implements」は、厳密には継承とは違う(「実装」と呼ぶ)
Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

import java.awt.event.*;
import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.
イベントが発生する部品の変数名.addリスナの名前(this);
.

}
public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}
public static void main(String[] args) {

new クラス名();
}

}

GUIプログラムのカタチ(処理つき)(4)

イベントが発生したときの処理内容を書く領域

GUI部品の変数は、フィールドとして宣言
 特に、JTextFieldやJRadioButtonなど、利用者から
入力をされる部品はフィールドとして宣言する必要

 イベントが発生したときの処理で、利用者からの入力を
処理するときに、変数宣言の位置が重要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

import java.awt.event.*;
import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.
イベントが発生する部品の変数名.addリスナの名前(this);
.

}
public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}
public static void main(String[] args) {

new クラス名();
}

}

GUIプログラムのカタチ(処理つき)(5)

イベントが発生したときの処理内容を書く領域

イベントが発生する部品に、
リスナを登録

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

import java.awt.event.*;
import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.
イベントが発生する部品の変数名.addリスナの名前(this);
.

}
public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}
public static void main(String[] args) {

new クラス名();
}

}

GUIプログラムのカタチ(処理つき)(6)

イベントが発生したときの処理内容を書く領域

 イベントが発生したときの処理
 「implements」で継承(実装)したリスナのメソッドを
オーバーライドして、処理を記述
 メソッド名や引数・戻り値は、リスナで決められている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

変数宣言の場所の注意
import java.awt.event.*;
import javax.swing.*;

public class クラス名 extends JFrame implements リスナ名 {
GUI部品の変数宣言
public クラス名() { /* コンストラクタ */

.
イベントが発生する部品の変数名.addリスナの名前(this);
.

}
public void リスナのメソッド名(イベント名 e) { /* リスナで決められたメソッド */

}
public static void main(String[] args) {

new クラス名();
}

}

イベントが発生したときの処理内容を書く領域

 イベントが発生したときの処理では、GUI部品の変数を利用する処理も
多い
 JTextFieldに入力された文字列を受け取る, など

 コンストラクタ内で変数を宣言すると、リスナのメソッドとはブロックが違う
= 「変数の宣言がされていない」とコンパイルエラー

リスナのメソッド内で利用するGUI部品の変数は、
必ずフィールド変数として宣言すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

 もっともオーソドックスなリスナ

 ボタンをマウスの左ボタンで押すとき、メニューから選択するときのリスナ

 オーバーライドするメソッドは
「actionPerformed(ActionEvent 引数名)」
戻り値は「void」
引数は「ActionEvent」

主に、「ボタンを押す」という意味のイベント

ActionListener

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

 「メソッドの引数名.getSource()」というメソッドで、どの部品でイベントが
発生したかを知ることができる

 このメソッドを使ってイベントが発生した部品を受け取り、if文で
処理内容を分岐させる

イベントが起こる部品が複数のとき?

JButton okBut, cancelBut;
.
public void actionPerformed(ActionEvent e) {

if (okBut == e.getSource()) { /* 「okBut」が押された場合 */

} else if (cancelBut == e.getSource()) {
/* 「cancelBut」が押された場合 */

}
}

okButが押されたときの処理を書く

cancelButが押されたときの処理を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

例

public class Sample extends JFrame implements ActionListener {
JButton twcu, suginami;

public Sample() { /* コンストラクタ */
getContentPane().setLayout(null);

twcu = new JButton("東女");
twcu.setBounds(10, 10, 100, 25);
twcu.addActionListener(this);
getContentPane().add(twcu);

「東京女子大学!」
と標準出力に出力

「杉並区!」と
標準出力に出力

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

例(続き1)

suginami = new JButton("杉並");
suginami.setBounds(110, 10, 100, 25);
suginami.addActionListener(this);
getContentPane().add(suginami);

setTitle("サンプル");
setSize(220, 70);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

} /* コンストラクタ終わり */

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

例(続き2)

public void actionPerformed(ActionEvent e) {
/* ボタンが押されたときの処理内容 */
if (e.getSource() == twcu) { /* 「東女」が押されたときの処理 */

System.out.println("東京女子大学!");
} else { /* 「杉並」が押されたときの処理 */

System.out.println("杉並区!");
}

}
public static void main(String[] args) {

new Sample();
}

}

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

入力/選択された値を受け取るには?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

 GUIの部品には、それぞれ値を受け取るためのメソッドが用意されている

 リスナのメソッドの中で、値を受け取り、その値を処理するプログラムを書く

値の受け取り方

「GUIの部品の変数名(オブジェクト名).メソッド名」で
受け取ることができる

JTextField field;
.
public void actionPerformed(ActionEvent e) {

.
String text;
text = field.getText();

}

例:

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

 JRadioButton, JCheckBox, JToggleButtonで利用可能
 isSelected()

戻り値はboolean型
 「true」であれば、選択されている状態
 「false」であれば、選択されていない状態

ボタン系(1)

if文を使って、xxxボタンが選択されている(true)であれば...をし、
xxxボタンが選択されていなければ(falseであれば)～をする、などのように処理をする

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

 ボタン系の「isSelected()」メソッドの使い方例
ボタン系(2)

JRadioButton maleRadio, femaleRadio;
.
public void actionPerformed(ActionEvent e) {

.
String gender;
if (maleRadio.isSelected() == true) {

// 「男性」のJRadioButtonが選択されている場合
gender = "男性";

} else if (femaleRadio.isSelected() == true) {
// 「女性」のJRadioButtonが選択されている場合
gender = "女性";

} else {
// 性別のJRadioButtonが選択されていない場合
gender = "未選択";

}
}

例:

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

主にJTextField, JTextAreaで利用可能
 getText()

戻り値はString型

入力フィールド

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

 getSelectedItem()
戻り値は、「Object」という型
 String型でキャストする

JComboBox

String item;
item = (String) comboBox.getSelectedItem();

例(JComboBoxの変数名は「comboBox」):

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

 getValue()
戻り値はint型

JSlider

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

 getSelectedValue()
戻り値は、「Object」という型
 String型でキャストする

JList

String item;
item = (String) list.getSelectedValue();

例(JListの変数名は「list」):

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

ボタンを押したときのウィンドウ操作

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

ボタンを押したときのウィンドウ操作
 ウィンドウに関して、行われる主な処理としては...

別のウィンドウを表示

現在表示しているウィンドウを消去

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

別のウィンドウを表示(1)
1. 2つ目のウィンドウを表示するプログラムを書く

 原則として、1つのクラスに1つのウィンドウのプログラム
 2つ目以降のクラスには「public static void main(String[] args)」は不要
 2つ目以降のクラスには「setDefaultClosingOperation」も不要

 2つ目のウィンドウを閉じたときにソフトが終了すると困るから

2. 1つ目のウィンドウのリスナのメソッドの中に2つ目のウィンドウを表示する
命令を書く
 「new 2つ目のウィンドウのクラス名();」でウィンドウを表示

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

別のウィンドウを表示(2)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 34

public FirstWin() {
.........
secondWin = new JMenuItem();
secondWin.addActionListener(this);
.........

}
public void actionPerformed(ActionEvent e) {

if (e.getSource() == secondWin) {
new SecondWin();

}
}
public static void main(String[] args) {

new FirstWin();
}

public SecondWin() {
.........
setSize(300, 100);
setTitle("Second Window");
setVisible(true);

}

「public static void main(String[] args)」と
「setDecaultClosingOperation(...)」は不要

別のウィンドウを表示(3)
 プログラムのコンパイル:

javac 1つ目のファイル.java 2つ目のファイル ...
で、関係するファイルをコンパイル可能

 プログラムの実行:
java mainを持つクラスのクラス名
で実行

 「mainを持つクラスのクラス名」が、1つ目のウィンドウ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 35

3つ目以降のウィンドウ
 1つ目のウィンドウから2つ目のウィンドウを表示する場合と同様
 n番目のウィンドウからn+1番目のウィンドウを表示する場合

 n+1番目のウィンドウを表示するプログラムを書く
 n番目のウィンドウ内のリスナのメソッド内にn+1番目のウィンドウを表示する命令
を書く

 「new n+1番目のウィンドウのクラス名();」でウィンドウを表示

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 36

ウィンドウを消す処理
 「setVisible(false)」でウィンドウが消える

 setVisible: JFrameクラスで定義されているメソッド
 「extends JFrame」でJFrameクラスを継承しているので、「オブジェクトの変数
名.setVisible」と
いう形でなく利用可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 37

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

setVisible(false);
} else if (e.getSource() == cancelBut) {

setVisible(false);
}

}

「OK」ボタンが押されたときの処理

ウィンドウを消す処理

入力された情報を次に送るには?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 38

入力された情報を次に送る
例えば...入力した情報の確認をするとき

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

情報入力のウィンドウから情報確認の
ウィンドウへ、入力された情報を送る必要

プログラムの書き方(1)
情報を受け取るウィンドウのコンストラクタに引数をつける

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 40

public AddressConfirm(String name, String address, String tel, String gender) {
.........
nameLabel = new JLabel();
nameLabel.setText("名前: ");
.........
nameField = new JLabel();
nameField.setText(name);
.........
addressLabel = new JLabel();
addressLabel.setText("住所: ");
.........
addressField = new JLabel();
addressField.setText(address);
.........

}

入力された情報を受け取る引数
 name: 名前の受け取り
 address: 住所の受け取り
 tel: 電話番号の受け取り
 gender: 性別の受け取り

コンストラクタの引数(受け取った
情報をラベルに表示)

AddressConfirm.java

プログラムの書き方(2)
情報を入力するウィンドウから、確認するウィンドウを表示するときに、
引数付きでウィンドウを作る

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

String name, address, tel, gender;
name = nameField.getText();
address = addressField.getText();
tel = telField.getText();
if (maleRadio.isSelected() == true) {

gender = "男性";
} else {

gender = "女性";
}
new AddressConfirm(name, address, tel, gender);

}
}

入力フィールドから入力された
情報を受け取り、変数に代入

JRadioButtonは、どれが押されていれば変数
に何を代入するかを記述

引数を使って確認用ウィンドウに情報を
受け渡し

AddressInput.java

GUIでのファイル操作

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

GUIでのファイル操作
 ファイル操作専用のGUI部品 – JFileChooser

読み込むファイルを決める

情報を書き出す(保存する)ファイルを決める

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 43

JFileChooser

JFileChooser
 これだけでファイル選択のウィンドウを表示する部品

 JFrameに貼りつける必要はなし

 ウィンドウ表示の方法

 ファイル読み込み: 「showOpenDialog(null)」というメソッドを利用
 ファイル書き出し: 「showSaveDialog(null)」というメソッドを利用

 ウィンドウ表示のメソッドの戻り値が0の場合が、「OK」を押されたとき
選択されたファイルの受け取り: 「getSelectedFile()」メソッドで受け取り

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 44

JFileChooser～読み込み(1)～
 ファイルを読み込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 45

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showOpenDialog(null);
if (code == 0) {

File readFile = chooser.getSelectedFile();
try {

FileReader fr = new FileReader(readFile);
BufferedReader br = new BufferedReader(fr);
.........

}
catch(IOException ioe) {
}

}
}

}

JFileChooser～読み込み(2)～
 ファイルを読み込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 46

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showOpenDialog(null);
if (code == 0) {

File readFile = chooser.getSelectedFile();
try {

FileReader fr = new FileReader(readFile);
BufferedReader br = new BufferedReader(fr);
.........

}
catch(IOException ioe) {
}

}
}

}

JFileChooserのオブジェクトを作り、
「showOpenDialog(null)」メソッドでウィンドウを表示

JFileChooser～読み込み(3)～
 ファイルを読み込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 47

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showOpenDialog(null);
if (code == 0) {

File readFile = chooser.getSelectedFile();
try {

FileReader fr = new FileReader(readFile);
BufferedReader br = new BufferedReader(fr);
.........

}
catch(IOException ioe) {
}

}
}

}

「showOpenDialog(null)」メソッドの戻り値が
「0」のときが、「開く」ボタンを押された場合

JFileChooser～読み込み(4)～
 ファイルを読み込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 48

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showOpenDialog(null);
if (code == 0) {

File readFile = chooser.getSelectedFile();
try {

FileReader fr = new FileReader(readFile);
BufferedReader br = new BufferedReader(fr);
.........

}
catch(IOException ioe) {
}

}
}

}

JFileChooserで選択されたファイルを受け取り、
Fileクラスの「readFile」変数に代入

「File」クラス: Javaでファイルを扱うために用意されているクラス

JFileChooser～読み込み(5)～
 ファイルを読み込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 49

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showOpenDialog(null);
if (code == 0) {

File readFile = chooser.getSelectedFile();
try {

FileReader fr = new FileReader(readFile);
BufferedReader br = new BufferedReader(fr);
.........

}
catch(IOException ioe) {
}

}
}

}

選択されたファイルの内容を読む処理(FileReaderクラスの
コンストラクタの引数は、Fileクラスのオブジェクトまたは

String型のファイル名)

JFileChooser～書き出し(1)～
 ファイルに書き込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 50

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showSaveDialog(null);
if (code == 0) {

File writeFile = chooser.getSelectedFile();
try {

FileWriter fw = new FileWriter(writeFile);
PrintWriter pw = new PrintWriter(fw);
.........

}
catch(IOException ioe) {
}

}
}

}

JFileChooser～書き出し(2)～
 ファイルに書き込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 51

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showSaveDialog(null);
if (code == 0) {

File writeFile = chooser.getSelectedFile();
try {

FileWriter fw = new FileWriter(writeFile);
PrintWriter pw = new PrintWriter(fw);
.........

}
catch(IOException ioe) {
}

}
}

}

JFileChooserのオブジェクトを作り、
「showSaveDialog(null)」メソッドでウィンドウを表示

JFileChooser～書き出し(3)～
 ファイルに書き込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 52

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showSaveDialog(null);
if (code == 0) {

File writeFile = chooser.getSelectedFile();
try {

FileWriter fw = new FileWriter(writeFile);
PrintWriter pw = new PrintWriter(fw);
.........

}
catch(IOException ioe) {
}

}
}

}

「showSaveDialog(null)」メソッドの戻り値が
「0」のときが「開く」ボタンを押された場合

JFileChooser～書き出し(4)～
 ファイルに書き込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 53

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showSaveDialog(null);
if (code == 0) {

File writeFile = chooser.getSelectedFile();
try {

FileWriter fw = new FileWriter(writeFile);
PrintWriter pw = new PrintWriter(fw);
.........

}
catch(IOException ioe) {
}

}
}

}

JFileChooserで選択されたファイルを受け取り、
Fileクラスの「writeFile」変数に代入

「File」クラス: Javaでファイルを扱うために用意されているクラス

JFileChooser～書き出し(5)～
 ファイルに書き込む場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 54

public void actionPerformed(ActionEvent e) {
if (e.getSource() == okBut) {

JFileChooser chooser = new JFileChooser();
int code = chooser.showSaveDialog(null);
if (code == 0) {

File writeFile = chooser.getSelectedFile();
try {

FileWriter fw = new FileWriter(writeFile);
PrintWriter pw = new PrintWriter(fw);
.........

}
catch(IOException ioe) {
}

}
}

}

選択されたファイルの内容を読む処理(FileReaderクラスのコンストラクタの
引数は、FileクラスのオブジェクトまたはString型のファイル名)

やってみよう!(1)
 「情報入力」ウィンドウに入力した情報を「情報確認」ウィンドウに
表示するプログラム

 「情報入力」ウィンドウに情報を入力し、「OK」を押したら、ファイル選択
ウィンドウからファイルを選択し、そのファイルに入力された情報を書き込む
プログラム

 「東京子, 東京都杉並区..., 03-3333-4444, 女性」という形で書き込み

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 55

やってみよう!(2)
下記の処理をするプログラム

1. ファイルを1つ選択
ファイルの内容は下図のようなもの

2. 1. で選択したファイルの内容を読み込み、1行1行の
内容をウィンドウに表示

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 56

k14x1001, 東京子, 東京都出身
k14y2030, 善福寺花子, 千葉県出身
k14z3050, 吉祥寺祥子, 埼玉県出身

ファイルの内容の例

※どのようなウィンドウの構成にすれば良いかも自分で考えること

 学生番号と氏名、出身地を「,」で区切って
1人1行で表したもの

 ファイルの行数は最大100行

