
情報処理技法
(Javaプログラミング)1

第5回
語句や文章を扱いたいときは?

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

第5回の内容
• 文字列の扱い方

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

前回の復習問題の解答
• 下記のプログラムを実行し終わったとき、変数resultの値がいくつになって
いるかを答えなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3

解答: 1150

public class Question4th {
public static void main(String[] args) {

int result = 0, apple = 5, banana = 2;

result = apple * 100 + banana * 200;

int pine = 1;

result = result + pine * 250;
}

}

この時点でresultの値は900

結果、900 + 250 = 1150

文字列の扱い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

文字列とは(p. 80)
• 文字を並べたもの

• 言葉や文章:
コンピュータにとっては1文字1文字が並んでいるもの

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

例えば...blue
人間: 青い「色」と解釈
コンピュータ: 最初に「b」があり、その次に「l」があり、その次に「u」があり、最後に「e」という

文字の並びと解釈

人間の考え方も、コンピュータにあわせる

コンピュータは意味をわかっているわけではない

文字列の扱い(p. 80)
• 文字列はいろいろな情報を持っている

• 文字の並び

• 文字列の長さ(文字の数)

• 文字列にはいろいろな操作ができる

• n番目の文字を取り出す
• m番目の文字からn番目の文字までで部分文字列を作る
• 文字列中の部分文字列を、別の文字列に置き換える

• etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

intやfloatなどの

数値とは扱い方が違う!

データ型(p. 81)
• 文字列のデータ型: String

• 変数を宣言する方法は、intやfloatなどと同じ

• 変数でない値を代入するときは、値を「"」で囲む

• 変数を代入するときは、「"」は不要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

String str1, str2;

最初の「S」は大文字、あとは小文字

str1 = "abc"; (「abc」は変数でない文字列)

str1 = str2; (「str2」はString型の変数)

※変数でない値は、日本語でもOK

文字列をつなげる(p. 85)
• 2つ以上の文字列をつなげるとき: 「+」記号でつなげる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

例1: str1の値が「abc」、 str2の値が「def」のとき、
str3に、str1とstr2をつなげた「abcdef」を代入したい

例2: str1に「Hello」、 str2に「World」が入っているとき、
str3に「Hello, World!」を代入したい

str3 = str1 + str2;

str3 = str1 + ", " + str2 + "!";
スペース

※1文字でも、文字列として扱うことができる

String型のデータ(p. 82)
• 「"」で囲まれた言葉は、コンピュータにとってただの文字列
• 「"」で囲まれていない言葉は、コンピュータにとっては変数

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

String str:
str = "abc";
str = abc;
str = "abc" + def + "ghi";

ただの文字列なので問題なし

変数として扱われるので宣言をしていなければ
コンパイルエラー

ただの文字列なので問題なし
変数として扱われるので宣言をしていなければ
コンパイルエラー

「"」が必要なときと不要なときをきちんと使い分けよう!

文字列のつなげかた(p. 85)
1. できあがりの文字列をイメージする

2. 変数・単なる文字列ごとに分解する

3. 変数や「"」つきの文字列に置き換える

4. 変数・単なる文字列の間に「+」をつける

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

金額は1000円です。

"金額は" payment "円です。"

"金額は" + payment + "円です。"

金額は 1000 円です。

エスケープシーケンス(1)(p. 83)
• プログラム中で扱うには、いくつか特殊な文字が存在

• Ex. 「Hello, "World"!」というデータを扱いたい場合

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

String sentence;

sentence = " Hello, " World " !";

ここからがデータと
しての文字列

ここまでがデータと
しての文字列 ???

「"」の区別がつかない
変数でない文字列を囲むための「"」
データとしての「"」(「World」を強調するための「"」)

エスケープシーケンス(2)(p. 83)
• 特殊な文字の区別

• プログラム中で何らかの処理の一部を表す文字

• 普通に書く

• 単なるデータとしての文字列の一部を表す文字

• 特殊な表記で書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

改行, ¥, Tab, ", '

エスケープシーケンス

エスケープシーケンス(3)(p. 83)
• 改行: 「¥n」
• Tab: 「¥t」
• "(ダブルクォーテーション): 「¥"」

• ¥: 「¥¥」
• '(アポストロフィー): 「¥'」

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

例:
Hello, "World"!
Nice to meet you!

I'm fine!

改行

Tab

String str = "Hello, ¥" World¥" ! ¥nNice to meet you! ¥n¥t I ¥' m fine!"

"(ダブルクォーテーション)

'(アポストロフィー)

考えてみよう!
• 教科書p. 111の例題01-02をやってみよう

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

文字列に対する操作(p. 87)
• 文字列を扱うために、Javaには様々なメソッドが用意されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

メソッドの形:

String型の変数.メソッド名(引数, 引数, …)
引数の順番と数、データ型は、それぞれのメソッドで決まっている
(「,」でつなげて書く)

メソッドは、様々な処理をしてその結果を返してくれる
→返してくれた結果(戻り値)を、変数に代入して使う(例えば、

int num=String型の変数.メソッド(…);
のようにして使う)
※戻り値のデータ型はメソッドによって決まっている

メソッド(p. 87)
• プログラム中で行われる処理の手順をまとめたもの

• 複数の処理をまとめて、1つの名前を付けたもの

• メソッド名、引数、戻り値(戻り値)から成る
• メソッド名: メソッドの名前
• 引数: メソッドに渡す情報
• 戻り値(戻り値): メソッドから返される処理結果

• 多くの場合、戻り値を変数に代入して利用する

• 「変数名 = メソッド」で、変数に戻り値が代入される

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

文字列の文字の数え方(p. 88)
• プログラムでは、文字列の文字は0番目から数える

• 文字の順番を表す番号を「インデックス」と呼ぶ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

例えば...abcdefghij
a: 0番目
b: 1番目
c： 2番目
.....
j: 9番目

文字列の長さ(文字数)(p. 88)
• 「length()」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

文字列型の変数.length();
int型で結果をもらう

例:
int strLength;
String str1="abc";

strLength: str1の文字数
 str1の長さを求めたいときは?

strLength=str1.length();

最初からn番目の文字
• 「charAt(n)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

文字列型の変数.charAt(n);
char型で結果をもらう
引数「n」はint型(n番目の意味)

例:
char letter;
String str1="abcdef";

str1の3番目の文字を求めたいときは?
(答え: d)

letter=str1.charAt(3);
注意: 文字列は、0番目から数える

部分文字列の最初の出現場所(p. 89)
• 部分文字列: 文字列の一部
• 「indexOf(str)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

文字列型の変数.indexOf(str);
int型で結果をもらう
「str」は探したい部分文字列 (String型)

例:
int index;
String str1="abcdefabcabcab";

str1での「abc」が最初に出てくる位置を求めたいときは?
(答え: 0)

index=str1.indexOf("abc");

※探したい文字列がなかったときは、結果が「-1」になる

部分文字列の出現場所(p. 91)
• あるインデックス以降で、部分文字列が最初に出現する場所

• 「indexOf(str, n)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

文字列型の変数.indexOf(str, n);
int型で結果をもらう
「str」は探したい部分文字列 (String型)
「n」は、調べ始めるインデックス

例:
int index;
String str1="abcdefabcabcab";

str1のインデックス1以降で、「abc」が最初に出てくる位置を求めたいときは?
(答え: 6) index=str1.indexOf("abc", 1);

※探したい文字列がなかったときは、結果が「-1」になる

部分文字列の最後の出現場所(p. 93)
• 部分文字列: 文字列の一部
• 「lastIndexOf(str)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

文字列型の変数.lastIndexOf(str);
int型で結果をもらう
「str」は探したい部分文字列(String型)

例:
int index;
String str1="abcdefabcabcab";

str1での「abc」が最後に出てくる位置を求めたいときは?
(答え: 9)

index=str1.lastIndexOf("abc");

※探したい文字列がなかったときは、結果が「-1」になる

部分文字列の出現場所(p. 95)
• あるインデックス以前で、部分文字列が最後に出現する場所

• 「lastIndexOf(str, n)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

文字列型の変数.lastIndexOf(str, n);
int型で結果をもらう
「str」は探したい部分文字列 (String型)
「n」は、調べ始めるインデックス

例:
int index;
String str1="abcdefabcabcab";

str1のインデックス8以前で、「abc」が最後に出てくる位置を求めたいときは?
(答え: 6) index=str1.lastIndexOf("abc", 8);

※探したい文字列がなかったときは、結果が「-1」になる

部分文字列(1-1)(p. 97)
• m番目の文字からn番目の文字までで部分文字列
• 「substring(m, n+1)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

文字列型の変数.substring(m, n+1)
「文字列型の変数」: 元の文字列
String型で結果をもらう

 m: 部分文字列の最初の文字の、元の文字列での位置(int型)
 n: 部分文字列の最後の文字の、元の文字列での位置(int型)

例: 「abcdefghi」から、「def」という部分文字列を作りたい

部分文字列の最初の文字: d
「d」の元の文字列での位置: 3

部分文字列の最後の文字: f
「f」の元の文字列での位置: 5

mは3, nは5と考える

部分文字列(1-2)(p. 97)
• m番目の文字からn番目の文字までで部分文字列
• 「substring(m, n+1)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

「文字列方の変数.substring(m, n)」とすると...
 「m」番目の文字は、新しい文字列に入る
 「n」番目の文字は、新しい文字列には入らない

m番目からn番目の文字列を作るときには、substringに「m」と「n+1」を渡す

文字列型の変数.substring(m, n+1)

「文字列型の変数」: 元の文字列
String型で結果をもらう

 m: 部分文字列の最初の文字の、元の文字列での位置(int型)
 n: 部分文字列の最後の文字の、元の文字列での位置(int型)

部分文字列(1-3)(p. 97)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

例:
String fullString="abcdefghi";
String shortString;

shortString=fullString.substring(3, 6);

注意: 文字列は、0番目から数える

fullStringの3番目から5番目の部分文字列を求めたいときは?
(答え: def)

部分文字列(2-1)(p. 99)
• m番目から最後の文字列までで部分文字列
• 「substring(m)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

文字列型の変数.substring(m)
「文字列型の変数」: 元の文字列
String型で結果をもらう

m: 部分文字列の最初の文字の、元の文字列での位置(int型)

例: 「abcdefghi」から、「e」以降の部分文字列を作りたい

部分文字列の最初の文字: e
「e」の元の文字列での位置: 4

mは4と考える

部分文字列(2-2)(p. 99)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

例:
String fullString="abcdefghi";
String shortString;

shortString=fullString.substring(4);

注意: 文字列は、0番目から数える

fullStringの4番目以降の部分文字列を求めたいときは?
(答え: efghi)

2つの文字列を比較(p. 104)
• 「equals(str)」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

文字列型の変数.equals(str);
「str」は等しいか比べたい文字列(String型)
boolean型で結果をもらう

例:
String str1="abcdef";
String str2="abcijk";

str1とstr2は同じ文字列?
(答え: false) str1.equals(str2);

※「str2」は変数でなくてもよい
つまり、「str1.equals("abcdef");」という書き方もOK

半角アルファベットを小文字化
• 「toLowerCase()」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

文字列型の変数.toLowerCase();
アルファベットが小文字になった結果をもらう
(もらう結果はString型)

例:
String upper="ABCDEF";
String lower;

upperを小文字にしたい
(答え: abcdef)

lower=upper.toLowerCase();

半角アルファベットを大文字化
• 「toUpperCase()」というメソッドを使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

文字列型の変数.toUpperCase();
アルファベットが大文字になった結果をもらう
(もらう結果はString型)

例:
String lower="abcdefghi";
String upper;

lowerを小文字にしたい
(答え: ABCDEFGHI)

upper=lower.toLowerCase();

よくある使い方
• indexOf, lastIndexOf, substringを組み合わせて使う

• ある文字で区切られた文字列を分解する場合など

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

例えば...「,」で区切られた3つの言葉を1つ1つの言葉として取り出す場合
(「apple, pine, banana」を「apple」と「pine」と「banana」に分解)

int m, n;
String first, second, last, original = "apple,pine,banana";
m = original.indexOf(",");
n = original.lastIndexOf(",");
first = original.substring(0, m);
second = original.substring(m + 1, n);
last = original.substring(n + 1);

やってみよう!
• 教科書p. 111の例題03-06をやってみよう

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

