
1

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

プログラムを書くときのお約束

エラーメッセージへの対処

プログラムで扱うデータのおはなし

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

本日: 授業のページの「第3回授業の出席確認(第2回授業の
復習問題)」にアクセスし、問題に解答

授業のページ: http://www.cis.twcu.ac.jp/~junko/Programming/

次回以降は、授業開始前に、授業のページからアクセスして解答

内容: 前回授業の復習問題

タイムスタンプで、正規出席と遅刻を区別

11:10までに解答したら正規出席

トラブルで解答ができないときは申し出ること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

パス: ファイルやフォルダのありかを表す文字の並び

どのようにフォルダをたどれば、目的のファイルやフォルダにたどり着くかを表すもの

「絶対パス」と「相対パス」に分類

「A/B」*で、「A」というフォルダの中に「B」というフォルダまたはファイルが入っている、
という意味

Ex. 「Java/Practice/1stLecture」で、「Java」フォルダの中の「Practice」フォルダの中の
「1stLecture」という意味

絶対パス: 最上位のフォルダから目的のファイルやフォルダへのパス

相対パス: 最上位以外のフォルダからのパス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

*Windowsでは「A¥B」と表す

ここでは、ホームフォルダからのパスを考えてみる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

ホームフォルダ

JavaTemp Work

Resource Practice

1stLecture

2

1. ホームフォルダから、目的のフォルダ・ファイルへの経路を「→」を使って書く

経路: 「コンピュータ」から、どのようにフォルダをダブルクリックして開いていけば、
目的のファイルやフォルダが見つかるか

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

ホームフォルダ

JavaTemp Work

Resource Practice

1stLecture

Ex1. 「1stLecture」までの経路: Java → Practice→1stLecture
Ex2. 「Resource」までの経路: Java → Resource
Ex3. 「Work」までの経路: Work

「→」を「/」で置き換える

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

Ex1. 「1stLecture」までの経路:
Java →Practice→ 1stLecture

Ex2. 「Resource」までの経路:
Java → Resource

Ex3. 「Work」までの経路: Work

Java/Practice/1stLecture

Java/Resource

Work

絶対パス

ソフトウェアの名前(+α)を入力することで、ソフトウェアを使うための道具

普通、ソフトウェアを使うときには、そのソフトウェアのアイコンをダブルクリックすると、
ソフトウェアが起動

ターミナルでは、ソフトウェアの名前(+α)を入力し、「Return」キーを押すと、
ソフトウェアが起動

Javaプログラミング1で使うターミナル:
「Finder」→「アプリケーション」→
「ユーティリティ」フォルダを開き、その中の「ターミナル」をダブルクリック

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

「コマンド」と呼ぶ

コマンドの形

プロンプトは、「%」や「$」と略して書かれることも

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

コマンド名 引数

必ず「コマンド名」を最初に入力し、その後に「引数」を入力
「コマンド名」と「引数」の間にはスペースが1つ以上必要

「% abc」と書かれている場合には、「%」の後から入力すること
(「%」は入力しない!)

例えば、コマンド名「ls」、引数「WWW」の場合:
「ls WWW」と入力

「コマンド名」がソフトウェアの
名前に相当

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

1. 手紙(命令書)を書く

2. 命令書を翻訳者に渡し、
機械語に翻訳してもらう

3. 機械語に翻訳された命令書を
コンピュータに受け渡す

4. コンピュータが命令書を読む

方法その1

2. 命令書を通訳に受け渡す

3. 通訳が命令書を1行ずつ
コンピュータに機械語で
通訳する

方法その2

ソースコード

インタプリタ
コンパイラ

実行可能プログラム

コンピュータに命令を伝えるための言語

誰がいつ解釈しても意味が同じ

文法規則を厳密に定義

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

手紙(命令書) ソースコード(プログラム)

プログラミングソースコードを作成すること

実行可能プログラム
ソースコードをコンパイルして機械語になったもの

用語

3

プログラミング言語の1つ

コンピュータやOSに依存せず、実行可能

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

Step 4. 機械語

Step 1. ソースコード

Step 3. Javaバイトコード

Step 2. Javaバイトコード

インタプリタ
JavaVM

(Java Virtual Machine)

Javaコンパイラ

コンピュータ

人

しくみ コンパイラ

Step 0: ターミナルのカレントフォルダを、Javaファイルの保存場所に
あわせる

この作業は、コマンドプロンプトを起動したときに1度だけ行う

Step1: Jeditなどでソースコードを作成する

ファイル名は、必ず拡張子を「.java」とすること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

Step2: ソースコードをコンパイルする
(コマンド名: javac, 引数: ソースコードのファイル名)

Step3: JavaバイトコードをJavaVMで実行する
(コマンド名: java, 引数: 拡張子なしのファイル名)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

% javac ファイル名.java

「ファイル名.class」というファイルが作成される

% java ファイル名
拡張子は不要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

プログラムには決まった形(最低限必要な命令のセット)がある

必ずこれだけの命令を書いてから他の部分を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {

}
}

JavaProg.java

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {

}
}

JavaProg.java
プログラム中に書くお約束

4

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {

}
}

JavaProg.java
import文

import文: Javaファイルの中で使われる機能(クラス)を明示する文

クラスの名前とパッケージをあわせて記述

パッケージ: Javaに用意されている様々な機能(クラス)の分類

プログラミングのために使うことのできる機能(クラス)を、その内容ごとに分類したもの

「java.io」, 「java.lang」はパッケージの名前

各クラスの名前は、「パッケージ名+名前」がフルネーム

例えばファイルに対する操作をするための「File」というクラスは、フルネームは「java.io.File」

「java.io.*」と書くと、「java.io」というパッケージに所属する全てのクラス、という意味

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

Javaファイルの中で書くクラスについては、そのクラスを使うことを
明示しておくことが多い

明示した場合: そのクラスの名前をパッケージ名を省略可能(「java.io.File」で
あれば、「File」とだけ書けばよい)

明示しなかった場合: その機能の名前をフルネームで記述

明示するには: 「import」というキーワードの後に続けてクラスの名前を書く

1つ1つのクラスの名前を指定するか、「java.io.*」のように、1つのパッケージ内の
クラスを全て、と指定する

「*」で「全て」という意味

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {

}
}

JavaProg.java

クラス宣言

Javaは、「クラス」というものを基本にして動作する

クラス: Javaプログラムを動作させるための基本単位

XXの処理をするためのクラス

XXのデータを格納するためのクラス

etc.

様々なの役割を持ったクラスをたくさん作り、お互いに連携させることでJavaの
プログラムは動作

Javaプログラミング1の範囲では、クラスは1つか2つ

「public class クラス名 {…}」で、クラスの名前を決める

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {

}
}

JavaProg.java

拡張子なしのファイル名

5

「public class クラス名 {…}」でクラスの名前を決める

Javaでは、原則として「クラス名」は、拡張子なし(「.java」なし)のファイル名にする

クラス名とファイル名は全く違うものにすることもできるが、原則として同じものにする

コンパイルすると、「クラス名.class」という名前のファイルができる

クラス名とファイル名(拡張子なしのファイル名)を全く違うものにしておくと、
「ファイル名.class」というファイルはできない

プログラムを実行するときは、「java」コマンドの引数にクラス名を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {

}
}

JavaProg.java

mainメソッド

「この部分を最初に実行すること」という意味の命令

Javaでは、プログラムを実行したときに、まず最初に
「public static void main(String[] args)」の「{」と「}」の間に書かれている命令を
実行

複数のクラスが存在するときは、 「public static void main(String[] args)」があるのは
1つのクラスのみ

複数のクラスを使ってプログラムを実行するときは、「java」コマンドで指定するクラスは、
「public static void main(String[] args)」を持っているクラス

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

ファイル名に使ってよい文字(全て半角)

アルファベット(大文字・小文字ともOK, 大文字・小文字は区別される)

数字, 「_」(アンダースコア)

ファイル名の1文字目は、数字にしないこと

1文字目はアルファベット又は「_」にすること

「int」や「double」などのJavaの中で定義されている言葉(予約語)を
ファイル名にしないこと

int, float, double, char

static, final, public, private, class, void, new

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

日本語フォルダの中には保存しないこと

ターミナルで日本語がうまく使えないため

保存するとき、Jeditの「漢字コード」の欄を「utf8」にしてから保存すること

MacでのJavaは、原則としてファイルの文字コードがUTF-8と考えている

漢字コードの欄が「utf8」になっていないと、日本語を使ったときに文字化けする
(コンパイルできないこともある)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

6

Javaプログラミング1では: mainメソッド内にすべての処理内容を書き込み

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {

}
}

JavaProg.java

すべての処理内容を書
き込み

書き込まれた命令は、上から順番に処理

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

public static void main(String[] args) {

XXXX;
YYYY;
ZZZZ;

}

JavaProg.java

コンピュータは、書かれてある
命令を上から順に実行
(1. XXXX
2. YYYY
3. ZZZZ
の順で実行)

日本語を書くとき

「、」で文節を区切る

「。」で文を区切る

英語を書くとき
スペースまたは「,」で単語を区切る

「.」で文を区切る

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

単語や文節、文を区切るための区切り文字がある

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 34

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {
int apple, orange, banana, pine, strawberry;

}
}

JavaProg.java

単語の区切り方その1:
スペース

文の区切り:
「;」(セミコロン)

単語の区切り方その2:
「,」(コンマ)

カッコは内側から閉じる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 35

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {
XX {

YY {
}

}
}

}

JavaProg.java

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 36

7

必要な命令が、必要な場所に書かれてあるか?

命令Aは命令Bよりも上に書いていないといけない

命令Aはこの「{ ～ }」の中に書いていないといけない

etc.

カッコの対応付けが間違っていないか?

開くカッコと閉じるカッコの数は同じになっているか?

正しい場所でカッコを閉じているか?

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 37

プログラム作成時に、エラーでうまくいかないことも多い

コンパイル時に表示されるエラー: コンパイルエラー

スペルミスをした

カッコを開き忘れ・閉じ忘れた

必要な場所に必要な命令を書いていなかった, etc.

コンパイル後、実行時のエラー: 例外

数を0で割ろうとした

使ってはならない番号を使おうとした(配列など), etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 38

プログラム中の文法間違い、という意味のエラー

プログラムに文法間違いはないが、何らかのミスでそれ以上実行できない、
という意味のエラー

エラーメッセージは、ターミナル上に表示される

コンパイル・実行後に、ターミナルに、予期しないメッセージが表示されていたら、
それをよく読むこと

コンパイルエラーは一度にたくさん表示されることがある

何もメッセージが表示されず、プロンプトが戻ってきたときは、コンパイルが成功

メッセージが表示された場合は、コンパイルに失敗

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

Jeditの設定で、行番号と全角スペースを表示するようにしておくと便利

行番号: メニューバーの「表示」→「行番号」→「パラグラフ」にチェック

「パラグラフ」にしておかないと、エラーの行番号(ターミナルに表示される)とJeditでの
行番号がずれる

全角スペース: メニューバーの「表示」→「不可視文字の表示」→
「全角スペース」にチェック

まちがえて全角スペースを書いてしまってエラーになることもよくある

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 40

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

XXX.java:n:メッセージ

プログラム中の文

^

基本的なコンパイルエラーのメッセージの形

XXX.java: コンパイルしたファイル名

n: エラーが見つかった行数(「n行目にエラーがある」という意味)

^: 「プログラム中の文」の中のあやしい部分(間違っていそうな部分)

コンパイルエラーには一番上から順に対処すること

コンパイルエラーがたくさん出てきたときは、多くの場合、上の方に出ている
メッセージがより適切な意味

1つのまちがいが影響していろいろな部分のメッセージを出すことも

例えば、宣言していない変数を5箇所で使っていたら、5つエラーメッセージが出てくる

「メッセージ」の部分をよく読み、エラーの意味を理解すること

Jeditで、エラーが出た行番号のところをよく見て、ミスを探すこと

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

8

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 43

Exception in thread "main"例外の内容
at 例外の発生場所(XXX.java:n)

基本的な例外のメッセージの形

例外の内容:発生した例外の意味(例外の名前)

XXX.java: 実行したファイル名

n: 例外が見つかった行数(「n行目に例外がある」という意味)

例外は、1度に1つだけしか表示されない(例外が出るとそこでプログラムの
実行が終わってしまうため)

何行もたくさん表示されることがあるが、発生した例外は1つだけ

何行もメッセージが表示されたとしても、「例外の内容」を必ず確認すること

何の例外が起こったのかを、きちんと理解すること

例外が発生した行番号は、多くの場合、「at 例外の発生場所」の1つ目が適切

1つ目の「at 例外の発生場所」を確認し、Jeditでその行番号の処理をよく確認して
修正すること

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 44

個々のメッセージは、教科書の各章の最後にあるので、よく見て
対処していくこと

各章の内容で、よく表示されそうなメッセージが掲載されている

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 45 Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 46

肉・魚系統

野菜・果物系統

飲み物系統

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 47

洗う・切る

野菜・果物の調理場へ

パックに詰める

肉・魚の調理場へ

届いた後、最初にどこへ持っていく?

そのまま陳列棚へ

箱の中身を見なければわからない??

コンピュータが扱うデータにも、様々な系統が存在

肉・魚

野菜・果物

飲み物

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 48

ダンボール箱

木箱

プラスチック箱

分類された状態で届けば、どこに
持っていけばいいかすぐわかる

9

肉・魚

牛肉, 鶏肉, 豚肉...

まぐろ, 鯛, さんま...

野菜・果物

キャベツ, きゅうり, にんじん...

りんご, みかん, バナナ...

飲み物

牛乳, ジュース, お茶…

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 49

箱の表に種類を書いた紙を貼る

= 箱に名前を付ける

スーパーマーケットでは「商品」を扱う

品物の系統: 箱の種類で分類

品物の種類: 箱に貼られてある紙で区別

プログラムでは?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 50

扱うもの: データ

主に整数, 小数, 文字

系統

整数

小数

文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 51

プログラムでの表現:
int

プログラムでの表現:
floatまたは double

プログラムでの表現:
char

プログラムでのデータは、どの系統になるか
決めておく必要あり

「データ型」と呼ぶ

1つ1つのデータにそれぞれ名前をつける

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 52

例えば...

購入するりんごの数(int): apple
量った牛肉の分量(float): meat
自分が働いている陳列棚のエリア(char): area

「変数」と呼ぶ

「変数」 = データを入れるための箱

データは原則として、必ず箱の中に入れて扱う

系統(データ型): int
種類(変数名): apple

系統(データ型): float
種類(変数名): meat

系統(データ型): char
種類(変数名): area

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 53

変数を使う(データを入れるなど)前に、
変数を準備する必要

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 54

int apple, orange, banana;
float meat, chicken;
char area, register;

予告(宣言)例
スペース

変数を「宣言する」という

「,」で区切って複数の変数を
予告(宣言)できる

= それぞれの箱が、「肉・魚系統」か「野菜系統」か 「飲み物系統」かを
コンピュータに知らせ、箱を準備する

変数の系統(データ型)を
先頭に書く

10

変数に使ってよい文字(全て半角)

アルファベット(大文字・小文字ともOK, 大文字・小文字は区別される)

数字, 「_」(アンダースコア)

変数名の1文字目は、数字にしないこと

1文字目はアルファベット又は「_」にすること

「int」や「double」などのJavaの中で定義されている言葉を変数に
しないこと

int, float, double, char

static, final, public, private, class, void, new

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 55

変数(箱)に値(データ)を入れて扱う

「=」で値を決める

用意した変数に初めて値を入れること: 初期化

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 56

購入したりんごの数が10個だった場合

apple = 10;

牛肉の分量を量ったら200.5gだった場合

meat = 200.5;

「代入する」という

= 箱の中に具体的なデータを入れること

10

200.5

代入をするとき、「=」の左側と右側は、同じデータ型でなければならない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 57

つまり...「a = b」の場合

aが「int」であれば、bも必ず「int」
bが「float」であれば、aも必ず「float」

aとbのデータ型が違う場合、コンパイルできない

計算などの処理の際に、具体的なデータを書く代わりに変数名を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 58

Ex. 100円のりんごを5つ買ったときの金額の計算
(りんごの個数の変数: apple)

100×5 100×apple
の代わりに

実際の計算は、「apple」の中に入っている
データをコンピュータが取り出し、計算する

変数を使うことのメリット

具体的なデータがいろいろと変わっても、プログラムの中を変更する必要がない
(Ex. りんごを5つ買った場合のプログラム、6つ買った場合のプログラム...というものを作る必要がない)

「参照する」と呼ぶ

変数(箱)の中には、計算結果や処理結果を入れることもできる

足し算: +

引き算: -

かけ算: *

割り算(商): /

割り算(余り): %

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 59

例えば...代金計算
(支払い金額: result)

apple = 10;
result = apple * 100;

apple = 10;
banana = 5;
result = apple * 100 + banana * 150;

100円のりんごを10個買った場合

100円のりんごを10個,
150円のバナナを5個買った場合

「result」には、「1000」と
いう結果が入る

「result」には、「1750」と
いう結果が入る

変数は使いまわし可能

同じ変数の宣言は1度だけで良く、何度も宣言する必要はなし

データ型の変更は不可

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 60

データ型: int
変数名: apple

宣言直後: りんごの値段として「100」円を代入

しばらく後: りんごの値段として「80」円を代入

さらに後: りんごの「個数」として利用

ただし...すでに値が入っている変数に別の値を代入すると...

データ型: int
変数名: apple

100 80

データ型: int
変数名: apple

80

もともと入っていた
データは消える

11

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 61

「milk」を、店にある牛乳の在庫のパック数と考えると...
トラックが来る前: 在庫のパック数は30

トラックが牛乳を50パック運んできた

milk = 30;

この後の店の在庫数の計算は?

milk = milk + 50;

トラックが来る前の
在庫数

トラックが来た後の
在庫数

「=」より後の変数は、直前までに代入されていた値
「=」より前の変数には、「=」より後の計算結果を代入

(値が新しいものに更新される)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 62

import java.io.*;
import java.lang.*;

public class JavaProg {

public static void main(String[] args) {
int milk;

milk = 30;

milk = milk + 50;
}

}

現在の在庫数の代入

牛乳の在庫数の
宣言

トラックが来た後の
在庫数の計算

1. 扱うデータのデータ型を決定し、名前を付け、変数として宣言する

2. 宣言した変数を初期化する

3. 変数を参照して計算等の処理に使う

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 63

「宣言」→「初期化(値の代入)」→「参照」の
順序を間違えないようにすること

同じ名前の変数は、1回しか宣言できない

変数には、宣言と同時に値を代入してよい

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 64

public static void main(String[] args) {
int abc;
.................................
int abc = 10;

}

コンパイルエラーが出る(一度宣言した変数は何回でも
使えるので、「int abc = 10;」の「int」は不要)

int abc;
abc = 10;

int abc = 10;

同じ意味を表す

どの変数であっても、宣言していなければ使えない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 65

int result;
result = banana + 10;

変数「banana」の宣言をしないまま、「banana」のデータを
使って計算しようとしている

「シンボルを処理解釈できません」というエラーメッセージ

宣言していない変数はすぐ後に書かれているので、よくメッセージを読んで
宣言をすること
※スペルミスの可能性もあるので、要注意

初期化をしないと、変数を参照できないので注意

箱の中にデータが入っていないので、存在しないデータを使って計算などは
できないため

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 66

int banana, result;
result = banana + 10;

変数「banana」の初期化をしないまま、「banana」の中から
データを取り出して計算しようとしている

「変数bananaは初期化されていない可能性があります」というエラーメッセージ

初期化が必要な変数(この変数を初期化すること）
※どのような値を代入すれば良いかはそのときどきでよく考えること

12

プログラムの内容

Jeditで記述し、ファイルとして保存

コンパイル・実行

ターミナルで、保存したファイルを指定

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 67

Jeditとターミナルは、どちらをどのように使うか、きちんと区別しよう!

ターミナルでのカレントフォルダを、Javaファイルを保存しているフォルダに
設定すること

カレントフォルダ: ターミナルでの、現在の作業フォルダ

ターミナルを起動したとき: カレントフォルダはホームフォルダ

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 68

カレントフォルダの変更のコマンド:

コマンドの入力
% cd ホームフォルダからの相対パス

Ex1. ホームフォルダの中で、「Desktop」→「Java」→「chap」に保存してある場合
(相対パス: Desktop/Java/chap):
% cd Desktop/Java/chap

Ex2. ホームフォルダの中で、「Download」→「chap」→「chap01」に保存してある場
合(相対パス: Download/chap/cha01):
% cd Download/chap/cha01

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 69

教科書p. 76の例題01-07をやってみよう

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 70

