
1

情報処理技法
(Javaプログラミング)1

第10回
よりよいプログラムを書くには?

人間科学科コミュニケーション専攻

白銀純子

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 1

第10回の内容
コメント

インデント

命名規則

数値の扱い

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 2

前回の復習問題の解答
for文、while文、do～while文の違いについて、使い方や処理内容の
面から解答しなさい。

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 3

 for文: 処理を繰り返す回数が決まっている場合によく利用される。
 while文: 処理を繰り返す回数が実行時にならなければわからない場合によく利用される。
ただし、処理内容が1度も実行されないこともある。

 do～while文: while文と同様、処理を繰り返す回数が実行時にならなければわからない
場合によく利用される。ただし、処理内容は必ず1度は実行される。

解答例

コメント

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 4

プログラム中に書けるのは処理だけ?
プログラムが長くなると、それぞれの場所で何をしているかわからなくなる

たとえ自分が作ったプログラムであっても…

企業でソフトウェアを作る人は、何人かのチームを作って1つの
ソフトウェアを作る

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 5

他の人が書いたプログラムを見て理解しなければならないことも...

処理内容だけ見て理解できる??

プログラムに「コメント」を書く

コメントって?
プログラム中に書く、プログラムの説明

それぞれの変数は何のための変数か

それぞれの文は何をするための文か

そもそもこのプログラムは何のためのプログラムか

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 6

int average, result;  average: 何の平均?
 result: 何の結果?

if (result < 10) ...  何をするif文?
 条件は何を判定している?

コメントには何を書いてもOK

2

コメントの書き方(その1)
「//」を使って書く

「//」以降、その行の終わりまでがコメントになる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 7

//average: 0から4までの数の平均
//sum: 0から4までを足し合わせた結果
int i, average, sum;
sum = 0; //sumを初期化する
for (i = 0; i < 5; i++) {

sum = sum + i; //0から4までの数を足し合わせる処理
}
//平均を求める
average = sum / 5;

コメント部分

コメントの書き方(その2)
「/* ... */」を使って書く

「/*」以降、「*/」までがコメントになる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 8

/*average: 0から4までの数の平均
sum: 0から4までを足し合わせた結果*/

int i, average, sum;
sum = 0; /*sumを初期化する*/
for (i = 0; i < 5; i++) {

sum = sum + i; /*0から4までの数を足し合わせる処理*/
}
/*平均を求める*/
average = sum / 5;

コメント部分

コメントの書き方(その2)の注意
一見カッコの関係(カッコは内側から閉じる関係)に見えるが、カッコの
関係とは別

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 9

/*average: 0から4までの数の平均
/*sumを5で割って求める*/
sum: 0から4までを足し合わせた結果*/

int i, average, sum;
sum = 0; /*sumを初期化する*/

コメントとはみなされない
コンパイルエラーに

コメントの「開始」と
「終了」の対応

コメントの使い方(1)
変数の意味について、その変数を宣言している文の直前または
直後などに書く

処理内容について、その処理を表す文の直前または直後に書く

プログラムが何であるかについて、ファイルの先頭に書く

etc.

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 10

コメントを書くことは、
わかりやすいプログラムを書くために重要!

コメントの使い方(2)
プログラムをコンパイルできないとき

コンパイルはできても処理結果が間違っているとき

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 11

プログラム中の間違っていそうな部分をコメントにしてコンパイル・実行して
みることで、間違っている部分を探すこともよくある

for (i = 0; i < 5; i++) {
// for (j = 0; j < 5; j++) {
// }
}

for (i = 0; i < 5; i++) {
/* for (j = 0; j < 5; j++) {

} */
}

「コメントアウト」と呼ぶ(プログラムの説明をするのではなく、
プログラムの処理部分をコメントにすること)

インデント

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 12

3

カッコの対応関係
if文やfor文、while文が入れ子になっている文では、カッコの対応関係は
わかりにくい

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 13

for (i = 0; i < 5; i++) {
if (i % 2 == 0) {
for (j = 0; j < 5; j++) {
}
} else if {
}
}

for (i = 0; i < 5; i++) {
if (i % 2 == 0) {
for (j = 0; j < 5; j++) {
}} else if {
}}

どの開きカッコがどの閉じカッコに対応している??

「インデント」をする

インデントって?
インデント = 字下げ

開きカッコのある文の開始位置と閉じカッコの位置をあわせる

カッコの内側にある文は、開始位置の前にスペースを入れて、外側の文よりも
後ろに書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 14

※プログラムでは、文と文の区切り、単語と単語の区切りにはスペースや改行を
いくつ入れてもOK

インデントをすると...
カッコの対応関係が少しわかりやすくなる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 15

for (i = 0; i < 5; i++) {
if (i % 2 == 0) {

for (j = 0; j < 5; j++) {
}

} else if {
}

}

2文字ずつインデントしている例
(カッコの内側にある文は、すぐ外側の文よりも

2文字分後ろに下がっている)

 開始カッコの後ろにはコメント以外のものは書かないこと
 1つの閉じカッコに1行使うこと(1行に2つも3つも閉じカッコを書かない)

2文字 2文字

Javaの命名規則

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 16

チームでプログラムを作ろうとすると...
他人が自分のプログラムを読んで理解する

自分が他人のプログラムを読んで理解する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 17

プログラムの読みやすさが重要!!

読みやすいプログラムを作るには?
コメントをたくさん入れて、プログラムの各所で何をしているかをわかりやすくする
インデントをする
個々の単語が何を意味しているか、わかりやすくする
クラス名や変数の名前として、意味を理解しやすいものをつける
ルールに従って名前をつける

Javaの命名規則

Javaの命名規則
クラスや変数、メソッドなどに名前をつけるときの、Javaでのルール

守らなくてもコンパイルエラーなどのエラーになるものではない

広く普及しているので、慣れて従うことが望ましい

ルールに従うことで、プログラム内の名前を見ると、それがクラス名・変数名・
メソッド名・etc.なのかがわかりやすくなる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 18

4

クラスの命名規則
先頭の文字をアルファベットの大文字とする

2文字目以降は小文字

複数の単語を連結する場合は、2つ目以降の単語の先頭を、
アルファベットの大文字とする

2文字目以降は小文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 19

Ex1. 「student」という名前をクラス名にしたい

Ex2. 「student」、「mark」、「management」という名前を連結して
クラス名にしたい

クラス名: Student

クラス名: StudentMarkManagement

大文字

大文字

小文字

小文字

変数の命名規則
先頭の文字をアルファベットの小文字とする

2文字目以降も小文字

複数の単語を連結する場合は、2つ目以降の単語の先頭を、
アルファベットの大文字とする

2文字目以降は小文字

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 20

Ex1. 「english」という名前を変数名にしたい

Ex2. 「english」、「mark」という名前を連結して変数名にしたい

変数名: english

変数名: englishMark

大文字

小文字

小文字

数の桁数

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 21

2進数のおなはし
数を2個の文字であらわす方法

2で繰り上がるという考え方

10進数の「2」を2進数では「10」と表現

コンピュータは、すべての物事を2進数で考えている

たくさんのスイッチの中の、どのスイッチがONでどのスイッチがOFFかで
すべての物事を判断する

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 22

スイッチのONとOFFを1と0で表す

10進数を2進数に変換
2進数を求める計算方法

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 23

商が0になるまで繰り返す
※小数の計算はしない

余りを余りnから余り1の順に左から並べたものが2進数

10進数の数2

商1・・・余り1
商2・・・余り2

2

2

商n・・・余りn

・
・
・2

10進数を2進数に変換(例)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 24

132
6・・・余り: 12

3・・・余り: 02
1・・・余り: 12

0・・・余り: 1

50

10進数の13を2進数に変換 10進数の50を2進数に変換

(13)10 = (1101)2

(50)10 = (110010)2

2
25・・・余り: 02
12・・・余り: 12

1・・・余り: 12

3・・・余り: 02

6・・・余り: 02

0・・・余り: 1

※矢印の方向に余りを並べる

5

2進数の桁数
10進数: 普通、「2」や「200」などの数を「02」や「00200」とは表現しない

2進数: 「xx桁の2進数」は、2進数の桁数が「xx」に足りなければ、
2進数の前に「0」をつけて表す

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 25

プログラミングの世界
 数は32桁または64桁で表現
 最も左の桁が0のときに正の数、1のときに負の数

Ex. 10進数の2を2進数で表現すると...

00......0010

30個の0

符号(正か負か)が判断される桁

int型で扱える数
-2147483648 ～ 2147483647

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 26

 2進数で表すと、32桁の数
 ただし、最初の1桁目の数で正か負かを表す

(0であれば正、1であれば負)

2147483647(10進数) = 011111...111(2進数)

符号(正か負か)が判断される桁

2147483647より1つ大きい数は?
011111...111 + 1 = 1000...000

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 27

31個の0

コンピュータは「-2147483648」と考える
※負数の表し方は正数よりもややこしく、この数が「-2147483648」になる

2進数で、本来数として利用できる桁を超えてしまった現象
(負数でも同様の現象がおきる)

桁あふれ
(オーバーフロー)と呼ぶ

参考(int以外の整数のデータ型)
int型よりももっと多くの桁数を扱うには?

int型よりも少ない桁数を扱うには?

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 28

「long」型: -9223372036854775808～9223372036854775807
(2進数で64桁)

「short」型: -32768～32767(2進数で16桁)

小数

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 29

小数の扱い(1)
小数部分が無限のものを扱えるわけではない

例えば割り算で割り切れない数や円周率

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 30

小数部分を適当なところで切り捨てる(四捨五入ではない)

例えば...1÷3:
コンピュータは「0.3333...333」と考える

本来はこの後も無限に続く

6

小数の扱い(2)
計算結果が小数のものをint型の変数に代入すると...

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 31

小数部分を切り捨てる(四捨五入ではない)

例えば...
int result;
int first = 5, second = 2;
result = first / second;

本来の「first / second」の計算結果は2.5
でもresultの値は「2」

小数の扱い(3)
小数部分が無限のものは適当なところまでで切り捨てられる

小数をint型に代入すると、小数部分が切り捨てられる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 32

本来の数よりも、小数の桁数が小さくなってしまう現象

桁落ちと呼ぶ

桁落ちの例(間違いやすいもの)

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 33

int i, average = 0;
int[] score = {98, 79, 44, 87, 64, 49, 51, 68, 93, 77};
for (i = 0; i < 10; i = i + 1) {

average = average + score[i] / 10;
}

9 + 7 + 4 + 8 + 6 + 4 + 5 + 6 + 9 + 7 = 65

人間が計算すると...
9.8 + 7.9 + 4.4 + 8.7 + 6.4 + 4.9 + 5.1 + 6.8 + 9.3 + 7.7 = 71

この部分の数は...
iが0のとき: 9, iが1のとき7, iが2のとき: 4, iが3のとき: 8, iが4のとき: 6, iが5のとき: 4,
iが6のとき: 5, iが7のとき: 6, iが8のとき: 9, iが9のとき: 7

桁落ち

桁落ちが起こると...
数が本来の数よりも小さくなってしまう

微妙な数値が必要な場合には要注意

桁落ちをした数に大きな数をかけると、本来の数に大きな数を
かけたときとの差が大きくなる

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved.

例えば...1÷3の結果が桁落ちし、0.333になるとすると

 0.333に100000をかけると33300
 1×100000を3で割ると(計算の順序を変えると)33333.333
 本来の1/3に100000をかけると、33333.333….

 コンピュータで計算をするときは、計算の順番に注意
(割り算はなるべく後にすること)

 例えば「1÷3×100000」の計算は、「1×100000」をしてから3で割る

34

平均の計算での桁落ちの防止
平均の計算の手順(その1)

1. 数の合計を計算する

2. 1. の合計を、数の個数で割り算する

平均の計算の手順(その2)

各数を、数の個数で割ったものを足していく

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 35

int i, sum = 0, average;
int[] score = {98, 79, 44, 87, 64, 49, 51, 68, 93, 77};
for (i = 0; i < 10; i = i + 1) {

sum = sum + score[i] / 10;
}
average = sum / 10;

コンピュータにさせてもOK

コンピュータにさせるのはNG(人間がするのはOK)

合計をしてから割り算

データ型の変換

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 36

7

数値のデータ型の変換(1)
小数のデータ型(float, double型)の変数の値をint型に代入したい

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 37

float data;
int num;
data = 3.0;
num = data;

コンパイルエラー(精度が落ちている可能性)

数値のデータ型の変換(2)
int型の変数同士の計算結果を小数のデータ型(float, double型)に
代入したい

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 38

double data;
int first, second;
first = 5;
second = 2;
data = first / second;

桁落ち(「data」の値は「2.0」に)

数値のデータ型の変換(3)
小数のデータ型の変数の値をint型に代入してもコンパイルエラーを
起こさないためには?

ただし、桁落ちは起こってもかまわない場合

int型の変数同士の計算結果を小数のデータ型に代入しても桁落ちを起
こさないためには?

その他

int型の変数の値をlong型に代入したい

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 39

「キャスト」を利用

キャストって?
あるデータ型の値を、別のデータ型に変換すること

変数の前に「(変換したいデータ型)」を書く

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 40

例えば...
int型の計算結果をdouble型に代入したい
result = (double) first / second;

double型の値をint型に代入したい
num = (int) data;

first: int型(「(double)」をつけることで、double型として扱われる
 割り算の場合は、割られる数の変換が必要

(割る数の変換はしなくても良い)

data: double型(「(int)」をつけることで、
int型として扱われる

変換できるのは数値のデータ型のみ
値が数のみであっても、データ型がString型の場合には変換できない

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 41

int num;
String str;
str = "50";
num = (int) str;

int num;
String str;
num = 50;
str = (String) num;

コンパイルエラー

※現状の内容の中では、変換できるものは数値のデータ型のみ

次回
課題の質問受け付け

復習問題の解答はなし

Copyright (C) Junko Shirogane, Tokyo Woman's Christian University 2015, All rights reserved. 42

