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It is commonlyassumedhat innate linguistic constraintsare
necessaryo learnanaturallanguagebasedntheapparentack

of explicit negative evidenceprovidedto childrenandon Gold’s

proofthat,underassumptionsf virtually arbitrarypositive pre-
sentation,mostinterestingclassesof languagesare not learn-
able.However, Gold’'sresultsdonotapplyundertherathercom-
monassumptiorthatlanguagepresentatiormay be modeledas
a stochastigrocess.Indeed,Elman (1993, Cognition) demon-
stratedhatasimplerecurrentonnectionishetwork couldlearn
anartificial grammarwith someof the compleities of English,
including embeddedalausespasedon performinga word pre-
diction taskwithin a stochastienvironment. However, the net-
work wassuccessfubnly wheneitherembeddedentencesere
initially withheld andonly laterintroducedgradually or when
thenetwork itselfwasgiveninitially limited memorywhichonly

graduallyimproved. This finding hasbeentaken assupportfor

Newport’s “less is more” proposal,that child languageacqui-
sition may be aidedratherthan hinderedby limited cognitive

resources.The currentarticle reportson connectionissimula-
tions which indicate,to the contrary that startingwith simpli-

fied inputsor limited memoryis not necessarin trainingrecur

rent networks to learn pseudo-naturadlnguagesjn fact, such
restrictionshinderacquisitionasthe languagesre mademore
English-like by the introductionof semanticaswell assyntac-
tic constraints. We suggesthat, undera statisticalmodel of

thelanguagesnvironment,Gold’s theoremandthe possibldack
of explicit negative evidencedo notimplicateinnate linguistic-
specificmechanismskurthermorepur simulationsndicatethat
speciateachingnethodr maturationatonstraintsnaybeun-
necessaryn learningthe structureof naturallanguage.

1 Introduction

Traditionally, the problem of languageacquisitionhas
beentreatedasa problemof learningto identify andpro-
ducethe valid sentencedn ones language. The ideal-
ized spealer is presumedio possess set of rules, or
competenceggrammar, capableof generatingall well-
formed sentence®r determiningwhetherary sentence
is valid or invalid. The learningprocessis driven both
by the learners innateendavmentof structuredinguis-
tic knowledgeandby the learners exposureto language.
Fundamentatiuestionsthus concernthe natureof these
sourcef information,how they areutilized, andthe ex-
tentto which eachis responsibldor the eventualattain-
mentof languageskill.

Thestandardpproachn linguisticshastendedo view
theinputto thechild learnersimply asa sequencef valid
sentencesStatisticalpropertiesf thisinputaregenerally
overlookedor thoughtto bearlittle relevanceto learning.
Indeed someconsidetthis afeatureof theapproaclasat-
tentionto statisticspotentiallyplacesa tremendougom-
putationalburdenonthelearner(seeAllen & Seidenbag,
1999, for discussion)Additionally, Baker (1979),among
others hasarguedthatchildrenreceve negligible explicit

negative feedbacKollowing productionerrors?

Iwe will usethetermexplicit negative evidenceto referto feedback
givento thechild in responséo the child’s utterancesOnecanfurther
distinguishbetweerovertexplicit negative evidence suchasdirectstate-
mentsthata particularsentences ungrammaticalandsubtleor covert
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Onevirtue of a simplemodelof thelanguageerviron-
mentis thatit facilitatestheinvestigatiorof formal proofs
of the learnability or unlearnabilityof certainproblems.
In particular the theoreticafindingsof Gold (1967)have
led to the widely acceptechypothesighat the burdenof
languagelearninglies primarily on our geneticendav-
mentand only secondarilyon actuallanguageexposure.
In short,Gold proved,undercertainassumptionghatno
superfiniteclassof languagess learnableby ary learner
without negative examples Amongthesuperfiniteclasses
of languagess the setof regularlanguagestecognizable
by finite-statemachinesaswell asthe classe®f context-
free and context-sensitve languageswhich are believed
to be morecloselyrelatedto naturallanguages.A criti-
calassumptionn Gold’s modelis thatthelanguagenput
consistsof a nearlyarbitrary sequencef positive exam-
ples,subjectonly to the constraintthat no sentencenay
bewithheldfrom thelearnerindefinitely.

Goldrecognizedheproblemhisfindingsposedor nat-
urallanguagecquisitionandofferedthreesolutions.The
first is that the child may make use of somesubtle or
covert nggative evidencein the parentalresponseso the
child’sutterancesResearchensho emphasizéherole of
ervironmentalinput in languageacquisitionhave princi-
pally focusedon this issue,arguing that subtlefeedback
is availableto the child andis correlatedwith improved
long-termlearning(seeSololov & Snawv, 1994, for re-
view). Although the extentto which parentsdo indeed
provide eitherovert or covert explicit feedbackis a mat-
terof ongoingdebatejt seemaunlikely thatthis feedback
would besufficiently robustto overcomeGold’s problem.

The secondsolutionproposedy Goldis thattheclass
of possiblenaturallanguagess smallerthanexpectedand
thatthe child hassomeinnateknowledgeidentifying this

class. This is the solutionthat hasbeenmostreadily ac-

explicit evidence,suchasa greatertendenyg for parentsto rephrasein-
grammaticatomparedvith grammaticalitterancesln contrastwe will
useimplicit negative evidenceto referto distributional propertiesof the
input which do not dependon the languageproductionof the learner
Implicit negative evidenceis sometimeseferredto asindirect although
we favor theformerterm.

ceptedn thelinguisticscommunityandis associatedvith
the theoriesof UniversalGrammarand the innate Lan-
guageAcquisition Device. Giventheapparentack of ex-
plicit negative evidenceprovided to children, strongin-
natelinguistic constraintsare regardedby mary authors
(e.g., Berwick, 1985; Marcus, 1993; Morgan & Travis,
1989; Morgan, Bonamo, & Travis, 1995) to be an in-
escapablesolution to the learnability problem. On the
surface,it seemgerfectlyreasonabléo hypothesizehat
the setof naturallanguagess limited: It is unlikely that
everyregularor every contet-freelanguages a possible
naturallanguage.However, even underthis assumption,
mostinterestingsubsetf theselanguageclassesvould
still beunlearnablainderGold’s model. It remainsto be
seenwhatdegreeof constraintsif any, would enablethe
learningof naturallanguagen Gold’s framework.
However, Gold madebrief mentionof a third possibil-
ity: that his assumptiorregardingthe possibletexts (or
sequencesf positive examples)for a languagewastoo
generabndthat“thereis anapriori restrictionontheclass
of texts which canoccur” (p. 454). In Gold’s model,a
fair text is a serieof positve examplesrom thelanguage
in which every legal sentencewill eventuallyoccur Su-
perfinitelanguagesvere foundto be unlearnableonly if
texts arearbitraryor are producedby the powerful class
of recursvefunctions.Suchafunctioncanprohibitlearn-
ing by producinga seriesof examplesdesignedspecif-
ically to confusethe learnerindefinitely However, this
hardlyseemsanappropriatenodelfor a child’s linguistic
ernvironment—whilethereis ongoing debateon the ex-
tentto which child-directedspeechis simplified relative
to adult-directedspeech(see,e.g.,Gallavay & Richards,
1994;Snaw & Ferguson1977)noonewould proposehat
it is tailoredspecificallyto hinderlanguageacquisition.
An alternatieis to constrainthepossibletexts by mod-
elinglanguagesastochastiprocess—somsentencesr
grammaticakonstructionsare morefrequentthanothers
andlanguages generatedby arelatively stationarydistri-

bution over thesestrings(seeSeidenbeg, 1997; Seiden-
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berg & MacDonald,in press).The statisticalstructureof
astochasticallygeneratedext providesanimplicit source
of negative evidence.Essentiallyif aparticulargrammat-
ical constructionis not obsened during someextended
but finite exposure,one can safelyassumehatit is not
partof thelanguagé. With moreexposuretheprobability
of makinganerrordecreased\ote, though,thatderiving
evidencefrom non-occurrenceithin afinite samplesin-
valid withoutamorelimited sourcethanGold'stext. The
difficulty in learningfrom anarbitrarytext deriveslargely
fromthepossibilitythata constructiorthatis importantto
the languagehasbeenwithheld from all prior sentences.
However, givena stochastidext, a constructiorthatdoes
notappearfor averylongtime hasavery smallchanceof
beinganimportantpart of the languageandcanthusbe
ignoredatlittle cost.

While a stochastianodelof text generatioris perhaps
still overly weak, asit ngglectsthe influenceof context
on sentenceselection|t is nonethelessufficientto allow
learnability Indeed,Horning (1969)and Angluin (1988)
have proved, underslightly differentcriteria for corver
gence,that stochasticcontet-free languagesare learn-
able from only positve examples. Angluin notesthat
thereis an importantsimilarity betweenthis result and
Gold's positive finding that even recursvely enumerable
languagesrelearnabldrom texts generatedby primitive
recursve functions, as opposedto fully recursve func-
tions. If we acceptthat a stochastidext is a morerea-
sonableapproximatiorto achild’slinguisticinputthanan
arbitrarytext, Gold’s findingsno longer posea “logical
problem”(Baker & McCarthy 1981)for languageacqui-
sition.

It is importantto note,though,thata stochastiwiew of

2Theterm“construction”hererefersto grammaticatlistinctions ab-
stractionsor rulesratherthanto specificsentencesThus,for example,
Chomsk's (1957)famoussentence’Colorlessgreenideassleepfuri-
ously”, is supportedby the input as one of mary simple actve SVO
sentencesAlthough connectionishetworks might not instantiatesuch
constructiongsexplicit, distinctdatastructuresthesesystemsionethe-

languagdeadsto a ratherdifferentdefinition of what it
meando learnalanguageOnthetraditionalview, learn-
ing a languagenvolvescorverging on the single,correct
grammarof the languageary deviation from this gram-
marin the actualbehaior of languageusersmustbe as-
cribedto performancdactors. Moreover, given that all
learnersof alanguagemustacquirecompetencén equiv-
alentgrammarsit is critical to haveformalguaranteethat
this will happen.From a stochastiqerspectie, by con-
trast, the grammarsacquiredby membersof a language
communityneedhotbeidenticalbut only sufficiently sim-
ilar to permit effective communication. The degree of
agreementamongindividuals in, for example, making
grammaticalityjudgmentswould thus be expectedto be
very high but not perfect. It is still possibleto formulate
explicit boundsonlearnability but theseboundsareprob-
abilistic ratherthanabsolute Moreover, on this view, the
studyof actuallanguageerformancglaysamorecentral
role thanon traditional views becausesuchperformance
is taken to reflectunderlyinglanguageknowledgemore
directly.

This leadsto a seriouspracticalproblem. The human
brainis considerablyrestrictedas a learningdevice due
to its limited memoryandanalyticalabilities. The princi-
pal mechanism®f languageacquisitionseemto operate
onlinewith relatively little storageandsubsequeranaly-
sis of the actualinputs. In contrastthe learningmecha-
nismsproposediy Horning, Angluin, andothersrely on
repeatedvaluationandre-esaluationof vastsetsof com-
plete,candidateggrammarsThey arethusunlikely to lead
to reasonableomputationamodelsof our languageac-
quisitionmechanism.

Givenrestrictionsof limited memoryandonlinelearn-
ing with iteratve update®f asmallsetof candidategram-
mars,oneway the statisticalstructureof a languagecan
beapproximateds throughtheformulationandtestingof

implicit predictions. By comparingone’s predictionsto

lesshave thecapabilityof developinginternaldistributedrepresentations whatactual lyoccurs feedbacks immediateandnegative

thatsupporteffective generalizatioracrossentencewith similargram-
maticalstructure(in theclassicsense).

evidencederivesfrom incorrectpredictions Althoughnot



RohdeandPlaut

LanguagéAcquisitionandStartingSmall

emphasizingnlineprediction,Chomsky (1981)followed
Gold (1967) in pointing out the potentialimportanceto
languageacquisitionof “expectations”:

A not unreasonabl@acquisitionsystemcan be de-
visedwith theoperatve principlethatif certainstruc-
turesor rulesfail to be exemplifiedin relatively sim-
ple expressionsywhele they would be expectedo be
found thena(possiblymarked)optionis selectedx-

cludingthemin thegrammaysothatakind of “neg-
ative evidence”canbeavailableevenwithoutcorrec-
tions,adersereactionsetc. (p. 9; emphasisadded)

The ability to predictutterancesn a languages surpris-
ingly powerful. Accuratepredictionis equivalentto pos-
sessinga grammarableto producea languageor to de-
cidethe grammaticalityof any sentencePredictionmust
be basedon a language mode|] which hasbeenfound
to be essentiain mary forms of automatechaturallan-
guageprocessing,such as speechrecognition (Huang,
Ariki, & Jack,1990). More generally in learningcom-
plex, goal-directedbehaior, predictioncan provide the
feedbacknecessaryo learnaninternalforward modelof
how actionsrelateto outcomegJordan,1992; Jordan&
Rumelhart,1992). Sucha model can be usedto con-
vert “distal” discrepanciebetweenobserableoutcomes
andgoalsinto the “proximal” error signalsnecessaryor
learning, therebyobviating the needfor externally pro-
vided error signals. An importantadditionalfeatureof
predictionis that feedbackis availableimmediately;the
learnerneednot performa re-analysisof previously ob-
sened positive evidence(cf. Marcus, 1993). Again, it
shouldbe emphasizedhat theoreticalproposalsnvolv-
ing expectationor predictionareprecludedunderGold’s
model becausegastexperiencewith the languageis not
necessarilyepresentatie of futureexperience.

It remains,then, to be demonstratedhat a compu-
tational systemcan acquirea languageunder stochastic
text presentatiorwithout relying on inappropriatenem-
ory or timerequirementsTowardsthisend,Elman(1991,
1993) provided an explicit formulationof how a general
connectionissystemmight learnthe grammaticalstruc-

ture of a languageon the basisof performinga predic-

tion task. He traineda simplerecurrentnetwork (Elman,
1990;sometimegermedan “Elman” network) to predict
thenext wordin sentencegeneratedyy anartificial gram-
marexhibiting numberagreementyariableverbargument
structure andembeddedalauses.Althoughword predic-
tion is a far cry from languagecomprehensiont canbe
viewed asa usefulcomponenbf languagegprocessingo

theextentthatlearningagrammaiis useful,giventhatthe
network can make accuratepredictionsonly by learning
the structureof the grammar Elmanfound that the net-
work wasunableto learnthe predictiontask—andhence,
the underlyinggrammar—whenpresentedrom the out-

setwith sentencegeneratedy the full grammar The
network was, however, able to learnif it was trained
first on only simple sentencedi.e., thosewithout em-
beddings)ollowed by an increasingproportionof com-
plex sentencesyr if the network’s memoryspanwasini-

tially reducedandgraduallyallowedto improve. Thefact
thatlearningwassuccessfubnly underconditionsof re-

strictedinput or restrictedmemaoryis what ElIman(1993)

referredto as“the importanceof startingsmall”

Elman’ finding that simplifying a network’s training
ervironmentor limiting its computationatesourcesvas
necessanfor effective languagelearning accordswell
with Newport's “lessis more” proposal(Newport, 1990;
Goldowsky & Newport, 1993)—thatthe ability to learn
a languagedeclinesover time asa resultof anincrease
in cognitive abilities. This hypothesisis basedon evi-
dencethat early and late learnersseemto shav qualita-
tive differencedn the typesof errorsthey malke. It has
beensuggestedhat limited abilities may force children
to focuson smallerlinguistic unitswhich form thefunda-
mentalcomponent®f languageratherthanmemaorizing
largerunitswhich arelessamenabléo recombinationin
termsof EIman’s network, it is possiblethatstagednput
or limited memorysimilarly causedhe network to focus
early on simpleandimportantfeatures suchasthe rela-
tionship betweennounsandverbs. By “starting small}

thenetwork hada betterfoundationfor learningthemore
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difficult grammaticatelationshipsvhich spanpotentially
long anduninformative embeddings.

We setout in the currentwork to investigatewhether

similar to Elman’s but involving weak semanticcon-
straintsmight resultin lessof an adwantagefor starting

smallin child languageacquisition.We beganby examin-

the needfor startingsmallin learninga pseudo-natural ing the effectsof anincrementatraining corpus,without

languagemight be lesscritical if the languageincorpo-
rated more of the constraintsof naturallanguages. A
salientfeatureof the grammarusedby Elmanis that it
is purely syntactic,in the sensethat all words of a par
ticular class,suchasthe singularnouns,were identical
in usage. A consequencef this is that embeddedna-
terial modifying a headnounprovidesrelatively little in-
formationaboutthe subsequentorrespondingerh Ear
lier work by CleeremansSenan-SchreiberandMcClel-
land (1989), however, had demonstratedhat simple re-
currentnetworks were betterable to learnlong-distance
dependenciem finite-stategrammarswhen intervening
sequencesvere partially informative of (i.e., correlated
with) thedistantprediction.Theintuition behindthisfind-
ing is thatthe network’s ability to represenandmaintain
information aboutan importantword, suchasthe head
noun,is reinforcedby theadvantagethisinformationpro-
videsin predictinginformationwithin embeddegbhrases.
As aresult,the nouncanmoreeffectively aid in the pre-
diction of the correspondingerbfollowing the interven-
ing material.

Onesourceof suchcorrelationsn naturallanguageare
distributional biases,due to semanticfactors,on which
nounstypically co-occumwith which verbs.For example,
supposealogsoften chasecats. Over the courseof train-
ing, the network hasencountereg¢hased moreoftenaf-
ter processingentencebeginning The dog who... than
after sentencedegginning with othernounphrases.The
network can,thereforereducepredictionerrorwithin the
embeddedlauseby retainingspecificinformationabout
dog (beyondit beinga singularnoun). As a result, in-
formation on dog becomesavailable to supportfurther
predictionsin the sentencasit continueqe.g.,The dog
who chased the cat barked).

Theseconsiderationged us to believe that languages

manipulatingthe network’s memory In the first simu-
lation study reportedhere,we found, somevhat surpris-
ingly, that the addition of semanticconstraintsnot only
resultedn lessof anadvantagefor startingsmallbutin a
significantadvantagéor startingwith thefull compleity
of the language. Moreover, andin accordancevith the
resultsof Cleeremansnd colleaguesthe advantagefor
“startinglarge” increasedsthelanguagevasmademore
English-like by strengtheninghe semanticonstraints.
In orderto betterunderstandhe discrepang between
our resultsandthoseof EIman(1991,1993),in asecond
studywe attempteda moredirect replicationof Elman’s
grammarand methods.Using a similar grammarbut our
own trainingmethodswe againfounda disadwantagefor
startingsmall. With parametersimilar to thoseusedby
Elman,however, the network failedto learnthetaskwell
in either condition. Altering thesemethodsby increas-
ing the rangeof the initial connectionweightsresulted
in much-improedperformanceéout a clearadvantageor
startingwith the full grammar In fact, we found no ad-
vantagdor startingwith a simplifiedtrainingcorpuseven
when the target languagecontainsno simple sentences.
Onlyin extremeconditionsinvolving no simplesentences
andembeddedlausesvhichareunrelatedo theword be-
ing modifieddid we find anadwantagefor startingsmall.
It thusappearghatthe benefitof startingwith simplified
inputsis notarobustresultfor theacquisitionof suchlan-
guagedy simplerecurreninetworks.
Thereremainedthe possibility that an advantagefor
startingsmall would hold for networks with initially re-
strictedmemory whichis the conditionElman(1993)in-
terpretedas a more appropriateapproximationto child
languageacquisition. To testthis possibility, we carried
out a third simulationstudyinvolving the samememory

manipulatiorasElman,usingtwo differentgrammarsand
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several combinationsof training parameters.Under no

circumstancedid wefind asignificantdifferencebetween
theresultswith full memoryandthe resultswith initially

limited memory Therefore, althoughearly memoryim-

pairmentsdo not significantly hinderlanguagdearning,
they do not seemto provide ary advantagean our experi-
ments.

Basedon theresultsof thesesimulationstudieswe ar-
guethat, in learningthe structureof pseudo-naturdan-
guagesthroughprediction, it is an inherentproperty of
simplerecurreninetworksthatthey extractsimple,short-
range regularities before progressingto more complex
structuresNo manipulationof thetrainingcorpusor net-
work memoryis necessaryo inducethis bias. Thus,the
currentwork calls into questionwhethereffective child
languageacquisitiondependson, or even benefitsfrom,
initially limited cognitive resource®r othermaturational
constraints.In the GeneralDiscussionwe addressopen
issuedn earlyversudateexposureo languageandques-
tion the necessityof eitherexplicit negative evidenceor
innatelinguistic constraintsn languageacquisitionunder
amodelof languagehat promotegheimportanceof sta-

tisticalinformation.

2 Simulation 1: Progressive inputs

Elman (1991)wasinterestedn demonstratindhow, and
indeedif, a recurrentnetwork could representomple

structuralrelationsin its input. A task was chosenin

which sentencesvere presentedneword at atime, and
the network wastrainedto predicteachsuccessie word.
Theability of thenetwork to performwell is indicative of

its ability to representind usethe structuralrelationsin

thegrammar

A notablelimitation of EImans grammarwas that it

was purely syntactic. The goal of our initial simulation
wasto extend EIman's work to apply to a more natural-
istic language.In particular we setout to studythe ef-

fect of makingthegrammamorenaturalthroughthe ad-

dition of semanticconstraintgi.e., restrictionson noun-
verb relationships). Given the findings of Cleeremans
etal. (1989)—thateven subtleinformationin anembed-
dingcanaidthelearningof long-distanc&lependencies—
we hypothesizedhatthe additionof semantiaconstraints

might reducethe advantagefor startingsmall.

2.1 Method

The methodsusedin the simulationare organizedbelow
in termsof thegrammarusedio generataheartificial lan-
guagethenetwork architecturethetrainingcorporagen-
eratedrom thegrammaytheproceduresisedfor training
thenetwork, andtheway in whichthe performancef the
network wastested. In general thesemethodsare very
similar to thoseusedby ElIman(1991,1993);differences

arenotedexplicitly throughout.

2.1.1 Grammar

The pseudo-naturdhnguageusedin the currentsimula-
tion was basedon the grammarshovn in Table1l. The
grammaigeneratesimplenoun-verbandnoun-\erb-noun
sentencewith the possibility of relative clausemodifica-
tion of nouns. The grammarinvolved 10 nounsand 14
verbs,aswell asthe relative pronounwho andan end-

of-sentencenarker (heredenoted'.”). Four of the verbs
weretransitive, four wereintransitve, andfive were op-
tionally transitve. Six of thenounsandsevenof theverbs
were singular the othersplural. Finally, numberagree-
ment was enforcedbetweensubjectsand verbs, where
appropriate.Relative clausesould be nested producing

sentencesuchas:

girls who cat who lives chases walk dog who
feeds girl who cats walk .

Althoughthis languagds highly simplified from natural
languageit is nonethelessf interestbecausein orderto
learnto make accuratepredictions,a network mustform
representationsf potentiallycomple« syntacticstructures
and remembeilinformation, suchas whetherthe subject

was singularor plural, over lengthy embeddings. The
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Tablel1: The Contet-FreeGrammarUsedin Simula-
tion1

S — NPVI.| NPVT NP.

NP — NJ| NRC

RC — whoVI| whoVT NP| who NPVT

N — boy| girl| cat| dog| Mary| John|
boys| girls| cats| dogs

VI — barks| sings| walks | bites| eats |
bark | sing| walk| bite| eat

VT — chases| feeds| walks| bites| eats |
chase | feed| walk| bite | eat

Note: Transitionprobabilitiesare specifiedand additional

constraintsareappliedon top of this framework.

Table2: SemanticConstraintoon VerbUsage

Intransitve  Transitve Objects
Verb Subjects Subjects  if Transitve
chase - ary ary
feed - human animal
bite animal animal ary
walk ary human only dog
eat ary animal human
bark only dog - -
sing humanorcat — -

Note: Columnsindicate legal subjectnounswhen verbs
areusedintransitively or transitively andlegal objectnouns
whentransitive.

grammarusedby Elmanwasnearlyidenticalto the cur
rent one, except that it had one fewer mixed transitiv-
ity verbin singularand plural form, andthe two proper
nounsMary andJohn, couldnotbe modified.

In the currentwork, severaladditionalconstraintsvere
appliedontop of thegrammaiin Tablel1. Primaryamong
thesewasthatindividual nounscouldengageonly in cer
tain actions,and that transitive verbscould act only on
certainobjects.For example,anyonecouldwalk, but only
humanscould walk somethingelseandthe thing walked
mustbe a dog. The full setof constraintsare listed in
Table2.

Another restrictionin the languagewas that proper
nounscould not act on themseles. For example,Mary
chases Mary would notbealegal sentenceFinally, con-
structionswhich repeatanintransitive verb,suchasBoys

who walk walk, weredisalloved becaus®f redundang.

Theseandthe abore constraintswill bereferredto asse-
manticconstraintsin thesimulation,semanticonstraints
alwaysappliedwithin the main clauseof the sentences
well aswithin any subclausesAlthough numberagree-
mentaffectedall nounsandverbs thedegreeto whichthe
semanticonstraintappliedbetweera nounandits mod-
ifying phrasevascontrolledby specifyingthe probability
thattherelevantconstraintsvould beenforcedor agiven
phrase.In this way, effectsof the correlationbetweena
nounandits modifying phrasepr of thelevel of informa-
tion the phrasecontainedaboutthe identity of the noun,
couldbeinvestigated.

Two otherparametersiereusedto controlthebehaior
of thegrammar First, the framework depictedin Table1
was modifiedto allow the direct specificatiorof the per
centageof simpleandcomplex sentenceproduced.Sec-
ond, the probability of nounphrasemaodificationwasad-
justedto control the averagelength of sentencesn the
language.

Whenprobabilitiesare specifiedfor the productionsn
the grammay it becomesa stochastiacontet-free gram-
mar (SCFG).A grammarof this form is corvenientnot
only for generatingexamplesentenceshut alsobecause
it allows us to calculatethe optimal prediction beha-
ior on the language. Given the stochasticnatureof the
language the network cannotin generalpredictthe ac-
tual next word in a sentenceccurately Rather over the
courseof training, we expectthe network to increasingly
approximatehetheoreticallycorrectpredictiongiventhe
sentenceontext up to the currentpoint, in the form of a
probability distribution over the 26 wordsin the vocab-
ulary. One adwantageof expressingthe languageas an
SCFGisthatthis probabilitydistribution canbecomputed
exactly. However, the abose mentionednumberagree-
mentandsemanticonstraintsaredifficult to incorporate
into the basicgrammarshowvn in Table 1. Therefore,a
programwas developed(Rohde, 1999) which takes the
grammay alongwith the additionalconstraintsand pro-

ducesa new, muchlarger SCFGwith the constraintsn-
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Figurel: Thearchitectureof thenetwork usedin thesim-
ulations.Eachsolidarron representfull connectvity be-
tweenlayers(with numbersof units next to eachlayer).
Hidden unit statesare copiedto correspondingcontext
units(dashedarrow) aftereachwordis processed.

70

corporatednto the stochasticcontext-freetransitions.In
this way, a single SCFGcouldbe producedor eachver

On eachtime step,a new word was presentedy fix-
ing the activationsof the input layer The actvity in the
mainhiddenlayerfrom theprevioustime stepwascopied
to the context layer. Activationthenpropagatedhrough
the network, asin a feed-fornard model, suchthat each
unit’s activation wasa smooth,nonlinear(logistic) func-
tion of its summedweightedinput from otherunits. The
resultingactivationsover the outputunitswerethencom-
paredwith their target activations. In a simplerecurrent
network, errorsarenot back-propagatethroughtime (cf.
Rumelhart,Hinton, & Williams, 1986) but only through
the currenttime step,althoughthis includesthe connec-
tions from the contet units to the hiddenunits. These

connectionsllow informationaboutpastinputs—asen-

sion of the grammarandthenusedto generatesentences codedin the previous hiddenrepresentatioicopiedonto

or to specifyoptimalpredictions.

2.1.2 Networkarchitectue

Thesimplerecurrennetwork usedin both EIman’s simu-
lationsandin the currentwork is shovn in Figurel. In-
putswererepresentedslocalistpatternsor basisvectors:

Eachword wasrepresentethy a singleunit with activity

the context units—toinfluencecurrentperformance Al-
thoughthe tamget outputsusedduring training were the
encodingfor the actualnext word, typically a numberof
wordswere possibleat any given pointin the sentence.
Therefore,to perform optimally the network must gen-
erate,or predict,a probability distribution over the word

unitsindicatingthelik elihoodthateachwordwould occur

1.0,all otherunitshaving activity 0.0. Thisrepresentation Next. Averagedacrossthe entirecorpus,this distribution

waschoserto deprivethe network of any similarity struc-
tureamongthe wordsthatmight provide indirectcluesto

their grammaticalproperties. The samel-of-n represen

tationwasalsousedfor outputs which hasthecorvenient
propertythattherelative activationsof multiple wordscan
be representedthdependently Although EImanresened
two of the input andoutputunits for anothempurposeall

26 units wereusedin Simulation1. Thetwo small 10-
unit hiddenlayerswere providedto allow the network to

re-representocalistinputsin a distributedfashionandto
performa more flexible mappingfrom the main hidden
layerto the output. Thesdlayershave the additionalben-
efit of reducingthe total numberof connectionsn the
model; A direct projectionfrom 26 unitsto 70 units re-
quires1820connectionsywhereaghe sameprojectionvia

10intermediateunitsrequiresonly 970connections.

will resultin the lowestperformanceerror on mostary
measure,including squarederror and Kullback-Leibler
divergence(seeRumelhartDurbin, Golden,& Chauvin,
1995). Table 3 containsthe formulaeusedto calculate
theseandthe othererror measuresliscussedn the cur-
rentwork.

Sentencesn the corporawere concatenatedogether
andcontet unitswerenotreinitializedat sentencéound-
aries. Note, however, thatit is trivial for the network to
learnto be sensitve to the startof a sentenceasthe end-
of-sentencenarkeris a perfectlyreliableindicatorof sen-

tencebreaks.

2.1.3 Corpora
Initially, Elman produceda corpusof 10,000sentences,

75% of which were “complex” in thatthey containedat
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Table3: Error MeasuredJsedin Testingthe Network

Error Measure Formula

City-Block >oilti—
Squarederror Y. (t; —
Cosine

Divergence

O,'l

Oz')2

> ti0i (X, 12 30, 03) 712
Zi t; 10g(ti/ol-)

Note: o; is theactiationof thesth outputunit onthe current
word andt; is its targetor desiredactivation.

leastonerelative clause Despiteexperimentingwith var-

ious architecturesstarting conditions,and learning pa-
rameters Elman (1991) reportedthat “the network was
unableto learnthetaskwhengiventhefull rangeof com-
plex datafrom the beginning” (p. 100). In responseo

thisfailure,EImandesignedh stagedearningregimen,in

whichthe network wasfirst trainedexclusively on simple
sentencesind thenon an increasingproportionof com-
plex sentences. Inputs were arrangedin four corpora,
eachconsistingof 10,000sentencesThefirst corpuswas
entirely simple, the second25% comple, the third 50%
comple, andthefinal corpuswas75% complex—aswas
theinitial corpusthatthenetwork hadfailedto learnwhen
it alonewaspresenteduringtraining. An additional75%
comple corpus,generatedn the sameway as the last

trainingcorpus,wasusedfor testingthe network.

In orderto studythe effect of varying levels of infor-
mationin embeddecdtlauseswe constructedive gram-
mar classes.n classA, semanticconstraintsdid not ap-
ply betweenthe clauseandits subclausepnly within a
clause. In classB, 25% of the subclausesespectedhe
semanticonstraints50%in classC, 75%in classD, and
100%in classE. Therefore,in classA, which wasmost
like EIman's grammay the contentsof a relative clause
provided no information aboutthe noun being modified
otherthanwhetheiit wassingularor plural,whereaglass
E producedsentencesvhich werethe mostEnglish-like.
We shouldemphasizehat, in this simulation, semantic

constraintsaalwaysappliedwithin a clause,ncluding the

main clause. This is becauseave wereinterestedprimar
ily in the ability of the network to performthe difficult
mainverbpredictionwhichreliednotonly onthenumber
of the subject,but on its semantigpropertiesaswell. In
thesecondimulation,we will investigatea casen which
all the semantiaconstraintsvereeliminatedto producea

grammaressentiallyidenticalto Elman’s.

As in Elman’s work, four versionsof eachclasswere
createdto producelanguagesof increasingcompleity.
GrammarsA, Aqs, Asg, andAys, for example,produce
0%, 25%,50%,and75%comple sentencesgespectiely.
In addition, for eachlevel of compleity, the probability
of relative clausemodificationwasadjustedo matchthe
averagesentencéengthin Elman’s corpora,with the ex-
ceptionthatthe 25% and50% complex corporainvolved
slightly longersentenceto provide a moreevenprogres-
sion, reducingthe large differencebetweenthe 50% and
75% complex conditionsapparentin ElIman’s corpora.
Specifically grammarswith compleity 0%, 25%, 50%,
and75% had 0%, 10%, 20%, and 30% modification,re-
spectvely. The averagesentencdengthsfor eachof the
trainingcorporausedin the currentsimulation,aswell as
Elmans,aregivenin Table4.

For eachof the 20 grammargfive levels of semantic
constraintsrossedvith four percentagesf complex sen-
tences)fwo corporaof 10,000sentencesveregenerated,
onefor trainingandthe otherfor testing. Corporaof this
sizearequiterepresentatie of thestatisticsof thefull lan-

guagefor all but the longestsentenceswhich are rela-
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Table4: Averagel_engthof Sentence§eneratedhy GrammairClasses

GrammairClass

% Complex A B C D E R* Elman
0% 3.50 350 350 350 3.50 3.46 3.46
25% 420 419 420 419 418 394 3.92
50% 5.04 5.07 5.07 5.06 5.06 4.39 4.38
75% 6.05 6.04 6.04 6.06 6.06 6.02 6.02

“Usedin Simulation2.

tively infrequent. Sentence$ongerthan 16 wordswere
discardedin generatingthe corpora, but thesewere so
rare (< 0.2%) thattheir loss shouldhave had negligible
effects.In orderto performwell, the network cannotpos-
sibly “memorize” the training corpusbut mustlearnthe
structureof thelanguage.

2.1.4 Training procedue

In the conditionElmanreferredto as“startingsmall; he
trainedhis network for 5 epochson eachof thefour cor-

pora,in increasingorderof compleity. During training,

weightswere adjustedto minimize the summedsquared
error betweerthe network’s predictednext word andthe
actual next word, using the back-propagatiorearning
procedurdRumelhartetal., 1986)with alearningrateof

0.1, reducedgraduallyto 0.06. No momentunwasused

and weightswere updatedafter eachword presentation.

Weightswereinitialized to randomvaluessampleduni-
formly betweent0.001.

For eachof the five languageclasseswe trainedthe
network shavn in Figure 1 using both incrementaland
non-incrementatraining schemes.In the comple regi-
men,thenetwork wastrainedonthemostcomplex corpus
(75% comple) for 25 epochswith a fixed learningrate.
Thelearningratewasthenreducedor afinal pasghrough
thecorpus.In thesimpleregimen thenetwork wastrained
for fiveepochneachof thefirstthreecorporan increas-
ing orderof compleity. It wasthentrainedon the fourth
corpusfor 10 epochsfollowedby afinal epochatthere-

ducedlearningrate. The final six epochsof training on

intendedo allow performancavith the simpleregimento
approactasymptote.

Becausave were interestedprimarily in what perfor
mancelevel was possibleunderoptimal conditions,we
searchedwiderangeof trainingparameterto determine
a setwhich consistentlyachieved the bestperformance
overall? We trainedour network with back-propagation
usingmomentunof 0.9, alearningrateof 0.004reduced
to 0.0003for thefinal epochabatchsizeof 100wordsper
weightupdate andinitial weightssampleduniformly be-
tween=+1.0 (cf. £0.001for EIman’s network). Network
performancéor bothtrainingandtestingwasmeasureth
termsof divergence(seeTable3). In additionto beingan
appropriatemeasureof the differencebetweentwo dis-
tributions from an information theoreticstandpoint(see
Rumelhartet al., 1995), divergencehasthe featurethat,
duringtraining,erroris injectedonly attheunit represent-
ing the actualnext word. This is perhapsnoreplausible
thanfunctionswhich provide feedbackio every word in
thevocatulary.

Becausadivergenceis well-definedonly over proba-
bility distributions (which sumto 1.0), normalizedLuce
ratios (Luce, 1986), also known as softmaxconstraints,
were appliedto the outputlayer In this form of nor
malization,the activationof outputunit s is calculatedoy
0; = e’i/zj e, wherez; is the unit’s netinput andj
rangesover all of the outputunits. Theremainingunitsin

thenetwork usedthe standardogistic activationfunction,

3The effects of changego someof theseparametervalues—inpar
ticular, themagnitudeof initial randomweights—will be evaluatedin a

thefourth corpus—notncludedin ElImansdesign—were latersimulation.

10
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o; = (1+ e—zi)fl, asin Elmans network.

2.1.5 Testingprocedue

Althoughthe network wastrainedby providing feedback
only to theactualnext wordin thesentencetheprediction
taskis probabilistic. Consequentlythe network cannot
possiblyachieve perfectperformancef evaluatedagainst
theactualnext word. Optimally, the network shouldpro-
duce a distribution over its outputsindicating the like-
lihood of eachword occurringnext given the sentence
context encounteredo far. Becauseour grammarsvere
in standardstochasticcontext-free form, it waspossible
to generatethe theoreticallycorrectnext-word distribu-
tionsgivenary sentenceontet. Suchdistributionswere
calculatedfor eachword in the final testingcorpusand
the performanceof our network was evaluatedagainst
theseoptimal predictions. By contrast,it wasnot possi-
bleto generatesuchoptimalpredictionsbasebnElman’s
grammar In orderto form anapproximatiorto suchpre-
dictions, ElImantrainedan empiricallanguagemodelon
sentencegeneratedn the sameway asthe testingcor-
pus. Predictionsby this model were basedon the ob-
sened next-word statisticsgiven every sentencecontext
to which it wasexposed.This canbe thoughtof asann-
grammodelor a k-limited Markov sourcewhosecontext
canextendbackto the beginning of the sentencebut no
further.

2.2 Resultsanddiscussion

AlthoughElmandid not provide numericalresultsfor the
comple condition, he reportedthat his network wasun-
ableto learnthe taskwhentrainedon the mostcomplex
corpusfrom the start. However, learningwaseffective in
the simpleregimen, in which the network was exposed
to increasinglycomplex input. In this condition, EIman
foundthatthe network achievedanoverallerrorof 0.177
when comparedagainstthe empirical model (using, we
believe, city-block distance;seeTable 3). However, this

type of criterionis nota particularlygoodmeasuref the

differencebetweertwo probabilitydistributions. A better
indicatoris themeancosineof theanglebetweerthe pre-
dictionvectors py whichthenetwork achiezeda valueof
0.852(SD=0.259)wherel.0is optimal.

Figure?? shaws, for eachtrainingcondition,the mean
divergenceerror per word on the testing corporaof our
network whenevaluatedagainsthe theoreticallyoptimal
predictionsgiven the grammar To reducethe effect of
outliers,andbecauseve wereinterestedn thebestpossi-
ble performanceresultswereaveragecdbver only thebest
16 of 20 trials. Someavhatsurprisingly ratherthananad-
vantagdor startingsmall,thedatarevealsasignificantad-
vantagefor the comple trainingregimen(Fi 150 = 53.8,
p < .001). Underno conditiondid the simple training
regimenoutperformthe comple training. Moreover, the
adwantagen startingcomplex increasedwith the propor
tion of fully constrainedelative clauses.Thus,therewas
a strongpositive correlationacrossindividual runs (r =
.75, p < .001) betweenthe orderof the grammarsrom
A-E andthe differencein error betweenthe simplever-
suscomple trainingregimes. This is consistentvith the
ideathat startingsmallis mosteffective whenimportant
dependenciespanuninformatie clauses.Nevertheless,
againsexpectationsstartingsmallfailedto improve per
formanceevenfor classA, in which relative clauseddid
not conformto semanticconstraintdmposedby the pre-

cedingnoun.

2.2.1 Hasthenetworklearnedthetask?

In interpretingtheseresults,it is importantto establish
thatthe network wasableto masterthe taskto a reason-
abledegreeof proficieng in the complex regimen. Oth-
erwise,it may be the casethat noneof the training con-
ditions producedeffective learning,renderingary differ-
encesin performancerrelevantto understandingqiuman
languagecquisition.Averagedivergenceerrorwas0.068
for the network whentrainedon corpusAr; and 0.093
whentrainedon corpusE;;, comparedvith aninitial er

ror of approximately2.6. The classE languageyielded

11
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s 0-14 Simple Regimen For sentencesvith threeor four clausessuchasDog
T o012t g Complex Regimen 41 who dogs who boy who dogs bite walks bite chases
g o010l cat who Mary feeds, performanceof the networks was
rg“_) considerablyvorse.Note, however, thathumansaregen-
§ 0081 erally unableto parsesuch sentencesithout multiple
;-; 0.06 - readings. In addition, fewer than 5% of the sentences
'S 004l in the mostcomplex corporawereover nine wordslong.
§ This limitation was necessaryn orderto matchthe av-
=00z eragesentence-lengthtatisticsin EIman’s corpora,but it
0.00

A B C D
Grammar/Taaining Corpus

Figure2: Meandivergenceperword predictionover the
75% comple testing corporageneratedrom grammar
classe® throughE (increasingn the extentof semantic
constraints¥or the simpleandcomple trainingregimes.

Notethatlower valuescorrespondo betterperformance.

Meansand standarderrorswere computedover the best
16 of 20trialsin eachcondition.

slightly higher error becausesemanticconstraintsforce
the network to make useof moreinformationin predict-
ing the contentsof relative clauses.Informal inspection
revealedthatthe network appearedo performnearlyper

fectly onsentencewith upto onerelative clauseandquite

well onsentencewith two relative clauses.

Figure?? compareshe outputactivationsof a network
trainedexclusively on corpusEz; with the optimal out-
puts for that grammar The behaior of the network is
illustratedfor the sentence8oy who chases girls who
sing walks andDogs who chase girls who sing walk.
Note, in particular the predictionof the main verb fol-
lowing sing. Predictionsof this verbarenot significantly
degradedeven aftertwo embeddedalauses.The network
is clearly ableto recallthe numberof the mainnounand
hasa basicgraspof the differentactionsallowedon dogs
andhumans.It nearlymasteredherule thatdogscannot
walk somethingelse. It is, however, unsureacrossa dou-
ble embeddinghat boys arenot allowed to bite andthat
dogsmay bark, but not sing. Otherwise the predictions

appeanquitecloseto optimal.

did not provide sufficient exposureto suchsentencesor
the network to masterthem. Interestingly the network
wasonly 8.2%worseon thetestingsetthanon the train-
ing setwhentrainedon corpusEy;, andonly 5.4%worse
whentrainedon Ar5. Thesefindingsindicatethatthenet-
work generalizedquite well to novel sentencedut was
still slightly sensitve to the particularcharacteristicof
thetrainingcorpus.

However, it shouldbe notedthatthis analysisis not a
cleantest of generalizatioras mary of the shortersen-
tencesn thetestingcorpusappearedh thetrainingcorpus
aswell. Table?? givesa breakdavn of performanceof
a samplenetwork from the previous analysis which was
trainedonly on the E5 corpus,on thosesentenceshat
appearedn both the training and testingset (“Familiar
Sentences andthoseonly in thetestingset(“Novel Sen-
tences”). The resultsindicatethat the meandivergence
error per word of the network was only 3.5% greater
on novel versusfamiliar sentencefmvolving onerelatve
clauseand 16.6% greateron novel sentencesnvolving
two relative clause<. Thus thenetwork generalizedairly
well, but certainlynot perfectly

A strongertest than predicting individual words for
whethera network haslearneda grammaris the one
standardlyemployed in linguistic studies: grammatical-
ity judgmentof entire sentences. Although the word-

predictionnetworksdo notdeliver overtyes/noresponses

4The comparisorfor simple sentencesnd for very complex sen-
tencess unreliablebecaus¢herewerevery few novel simplesentences
andno very comple sentenceshat appearedoth during training and
testing.

12
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Figure3: Predictionsof the network trainedon corpusEzs ontwo samplesentencegwhite bars)comparedvith the
optimal predictionsgiventhe grammar(filled bars). To enhanceontrastall valuesshavn arethe squareroot of the
actualprobabilities.

Table5: Analysisof the E75 testingcorpusandperformancef anetwork onfamiliar andnovel sentences.
MeanDivergenceError

Relative Total Unique Percent Familiar Novel
Clauses Sentences Sentences Novel Sentences Sentences ExampleNovel Sentence
0 2548 230 1.3 0.011 0.019 boy chases dog .
1 5250 2413 53.4 0.043 0.045 dogs who John walks chase
girl .
2 1731 1675 94.3 0.110 0.123 dog who chases John who
feeds cats bites Mary .
3 395 395 100 0.242 0.247 John feeds cats who bite
cats who Mary who walks
dog feeds .
4 76 76 100 0.359 0.364 girls who walk dogs who bite
Mary who cats who chase
Mary chase sing .
Overall 10000 4789 69.8
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to grammaticalversusungrammaticakentencesywe as-
sumethis decisioncan be basedon the accurayg of its
predictionsthroughouta given sentencedseealso Allen
& Seidenbay, 1999). Specifically theword encountered
at the point at which a sentencdbecomesingrammatical
will be poorly predictedandwill likely causepoor pre-
dictionsfor subsequentvords. Accordingly, asa simple
approximationye selected¢he two wordsthatweremost
“surprising” to the network (thoseto which the network
assignedheleastlik elihood)andtookthelog of theprod-
uctof thetwo likelihoodsasa measuref the “goodness”
of the sentencdor the purposeof judgingits grammati-
cality.

In orderto obtaingrammaticahndungrammaticasen-
tencedor thistest,wetookeachsentencén theE;5 gram-
marandperformedanumberof transformationsWe used
the sentencen its original form, eachsentenceproduced
by removing oneof its words (not including the period),
and eachsentenceproducedby replacinga single word
with someother word. A sentencehaving five words
would thusresultin 126 derived sentencesEachderived
sentencevasthenclassifiedasgrammatical accordingo
theErs grammaysemanticallynvalid, or syntacticallyin-
valid. Syntacticallyinvalid sentencearethosethatwould
not be acceptedvy the E;s grammarevenif all of the
semanticconstraintswere removed. For example, boy
chases who or boy who chases cats walk. Seman-
tically invalid sentencesyn the otherhand,would be ac-
ceptedby the grammarwith no semanticconstraintsout
areruled out by the semanticconstraints. For example,
boy bites dog. Note thatthe invalid sentencesre far
from randomcollectionsof words and differ from valid
sentencesn only a singleword. Often the invalid sen-
tencesare valid far beyond the point at which the trans-
formationtook place.

The selectednetwork, trained only on the E5 cor
pus, was run on eachof the derived sentencesnd the
strengthwith whichit predictedeachwordrecordedFig-
ure ?? shows the distribution of the goodnessmeasure
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Figure 4: Distributions of a measureof grammaticality
for fully grammaticabentencedpr sentencewhich vio-
late semanticconstraintgbut obey syntacticconstraints),
andfor sentencesvhich violate syntactic(andsemantic)
constraints.The measurds the log of the productof the
two worstword predictionsin the sentence—setext for
details.

for sentencesn eachof the three catagories. It is ap-
parentthatthe measuredoesa fairly goodjob of pulling
apartthe threedistributions. We cannow askhow well
variousjudgmentscan be madegiven the measure.On
thestandardyrammaticalitjjudgmentaskof distinguish-
ing correctsentence$rom thosewith a syntacticviola-
tion, a decisioncriterionof —3.75 yields highly accurate
performancewith only 2.21%falsepositvesand2.95%
misses(d’ = 3.90). In fact, the network canalsodistin-
guish, althoughsomavhat less accurately syntactically
legal sentencesvith semanticviolations (cf. “Colorless
greenideas..”) from sentencesvith true syntacticvio-
lations: a decisioncriterionof —5.40 yields 19.6%false-
2.00). Notethat,in this
lattercasethenetwork neverencounteredentencesf ei-

alarmsand 12.7% misses(d’

thertypeduringtraining. Also notethatthe syntactically
invalid sentencesvere not simply randomword jumbles
but differedfrom a valid sentencdy only a singleword.
The “goodness’measurecanalso provide a basisfor
determiningwhatfactorsinfluencethe relative effective-
nessof processingrarioustypesof valid sentencesNot

surprisingly goodnesgenerallydecreasewith the num-
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ber of embeddingsin the sentence(meansof —2.35,
—2.71, —3.20, —3.72 for sentencesvith 1, 2, 3, or 4
embeddingsrespectrely; p < .001for all pairwisecom-
parisons). Interestingly sentencesvith no embeddings
producesomavhatlower values(mean—2.43) thanthose
with oneembeddingtr796 = 5.51,p < .001),but this is
attributableto the unnaturallylow proportionof simple
sentencei the E;5 corpusby construction(25.5%sim-
ple vs.52.5%singly-embeddedentences)Amongcom-
plex sentencesgcenterembeddedsentencediave higher
goodnesghan purely right-branchingsentencegmeans
—2.40 vs. —2.56; tg219 = 7.40, p < .001) but, again,
this is highly confoundedwith frequeng (50.9% vs.
11.3%of sentencesiespectiely). Right-branchingsen-
tenceshave highergoodnesghan object-relatve center
embeddedsentences—aubclasswith comparablefre-
gueny (10.3% of sentencesmeangoodnesf —2.75;
ta157 = 6.947,p < .001). Thislatterfindingis morein ac-
cordwith whatwould be expectedo hold for humansub-
jects,butit shouldbekeptin mindthatthecurrentcorpora
were not designedo matchthe distribution of syntactic

constructiongoundin English.

Having providedevidencethatarepresentatie network
has, in fact, learnedthe grammarreasonablywell (al-
thoughcertainlynot perfectly)we canreturnto the ques-
tion of the basisfor our failure to find an advantagefor
startingsmall. One possibility is that, althoughthe net-
work trainedin the smallregimenmight have performed
more poorly overall, it may nonetheleshave learned
long-distancelependencielsetterthanwhentrainedwith
the complec regimen. To testthis hypothesiswe com-
putedthetotal probabilityassignedo ungrammaticapre-
dictions(i.e., wordsthatcould not, in fact,comenext in
the sentence)as a function of sentenceposition of the
predictedword (seeFigure??). In general fewerthan8
of the 26 wordswerelegal at ary pointin a sentencero-
ducedby grammarE;s. Overall, performancedeclined
with word position(exceptfor position16 which canonly

be end-of-sentence)This trendis duelargely to the fact
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Figure5: Total probabilityassignedby thenetwork to un-
grammaticapredictions,asa function of the position of
thepredictedword in sentencefrom grammarsA andE,
for the simpleand comple training regimes. Valuesare
averagedoverall 20 networkstrainedin eachcondition.

that early positionsare dominatedby predictionswithin
simple sentenceswhereadater positionsare dominated
by predictionswithin complex sentencesvith multiple
embeddingsEvenso, 17% of the total outputactivation
spreadover 18 illegal wordsis respectableconsidering
thatrandomizedwveightsproduceabout71%illegal pre-
dictions. More importantly acrossword positions,the
comple training regimen producedbetter performance
thanthesimpletrainingregimen(Fy 15 = 25.7,p < .001).

In summarystartingwith simpleinputsprovedto beof
no benefitandwasactuallya significanthindrancewvhen
semanticonstraintappliedacroslausesThenetworks
were ableto learnthe grammarsquite well evenin the
comple training regimen. Moreover, the advantagefor
trainingonthefully complex corpusincreasedsthelan-
guagewas mademore English-like by enforcinggreater
degreesof semantiaconstraintsWhile it hasbeenshavn
previously thatbeginningwith a reducedraining setcan
bedetrimentalin classificatiortaskssuchasexclusive-OR
(Elman, 1993), it appearghat beginning with a simpli-
fied grammarcanalsoproducesignificantinterferenceon

a morelanguage-lile predictiontask. At the very least,
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startingsmall doesnot appeatto be of generalbenefitin

all languagdearningernvironments.

3 Simulation 2:
(1993) study

Replication of Elman’s

Our failureto find an advantagefor startingsmallin our
initial work led us to askwhat differencesbetweenthat
studyandElmans wereresponsibldor thediscrepante-
sults. All of thegrammardn thefirst setof simulations
differedfrom Elman’s grammarin that the languagere-
tainedfull semanticonstraintaithin the mainclause.lt
is possiblethatwithin-clausedependenciegerein some
way responsibldor aidinglearningin the comple train-
ing regimen. Thereforewe producedalanguagelabeled
R for replication which wasidenticalto Elmans in all
known respectsthusruling outall but themostsubtledif-

ferencesn languagesthesourceof ourdisparateesults.

3.1 Method

Like Elman’s grammay grammarR usesjust 12 verbs:
2 pairseachof transitive, intransitive, and mixed transi-
tivity. In addition, asin Elman’s grammay the proper
nounsMary and John could not be modified by a rel-
ative clauseandthe only additionalconstraintsnvolved
numberagreement. We should note that, althoughour
grammarand ElIman’s producethe samesetof stringsto
the bestof our knowledge, the probability distributions
overthestringsin thelanguagesnaydiffer somavhat. As
before,corporawith four levels of compleity werepro-
duced.In this casethey exactly matchedElman’s corpora
in termsof averagesentencdength(seeTable4).®
Networks weretrainedon this languageboth with our
own methodsand parametersandwith thoseascloseas
possibleto the onesElmanused. In the formercase we

usednormalizedbutputunitswith adivergencesrrormea-

5To matchthe averagdengthsof sentencegeneratedby grammarR
ascloselyaspossibleto thoseproducedy Elmans grammayrthe selec-
tion probabilitiesfor intransitve verbsacrossthe levels of compleity
(0%, 25%, 50%, and 75%) were increasedrom 50% for each(asin
grammarlasse#\—-E) to 54%,65%, 75%,and50%,respectiely.

sure,momentunmof 0.9, elevenepochsof training on the
final corpus,a batchsize of 10 words, a learningrate of
0.004 reducedto 0.0003for the last epoch,and initial
weightsbetween+1. In the latter case,we usedlogis-
tic outputunits,squarecerror, no momentumfive epochs
of training on the fourth corpus,online weight updating
(afterevery word), a learningrate of 0.1 reducedo 0.06
in equalstepswith eachcorpuschangeandinitial weights
betweent0.001.

3.2 Resultsanddiscussion

Even whentraining on sentenced$rom a grammarwith
no semanticconstraintspur learningparametersesulted
in an adwantagefor the complex regimen. Over the best
12 of 15 trials, the network achiezed an averagediver-
genceof 0.025underthe complex condition compared
with 0.036for the simple condition (F7 22 = 34.8,p <
.001). Aside from the learningparameterspne impor-
tantdifferencebetweerour training methodandElman’s
was that we added6 extra epochsof training on the fi-
nal corpusto both conditions. This extendedraining did
not, however, disproportionatelypenefithe complex con-
ditionin someway. Betweerepoch?0and25,theaverage
divergenceerror underthe simpleregimendroppedfrom
0.085t0 0.061. During the sameperiod, the error under
the complex regimenfell only from 0.051to 0.047%

It is againimportantto establishthat the network was
actuallylearningto performthetaskwell. Otherwisethe
apparenadvantagefor startinglarge might be an artifact
of settlinginto localminimadueto poortrainingmethods.
The bestmeasureof network performancevould appear
to be a direct comparisonwith the resultspublishedby
Elman(1991).However, asdiscusse@arliet EImaneval-
uatedhis network usingempiricallyderivedprobabilities,
ratherthanpredictionsgeneratedlirectly from the gram-
mar.

5The further drop of theseerror values,0.047and0.061,to the re-
portedfinal valuesof 0.025and0.036resultedrom theuseof areduced
learningratefor epoch26.
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In orderto approximateElman’s evaluationmethods,
we trainedan empiricalmodelon the R;5 testingcorpus,
aswell ason 240,000additionalsentenceproducedby
the samegrammar Elmanreporteda final errorof 0.177
for his network (using, we believe, city-block distance).
When trained on corpusRy75s and evaluatedagainstthe
empiricalmodel, our network producedan averagecity-
block distanceof 0.240 (over the best12 runs), which
would seemto be considerablyvorse.However, asmen-
tioned earlier cosineis a more accuratemeasureof the
differencesbetweenprobability distributions. Our net-
work had an averagecosineof 0.942, which is consid-
erablybetterthanthe valueof 0.852reportedby Elman.

However, the empirical model itself provides a poor
matchto thetheoreticallyderived predictionsand,hence,
is not an appropriatebasisfor evaluatingthe extent to
which a network haslearnedthe structureof a grammar
Specifically when evaluatedagainstthe theoreticalpre-
dictions, the empiricalmodelhad a meandivergenceof
0.886, a city-block distanceof 0.203, and a cosine of
0.947. Thesevaluesare all muchworsethan thosefor
thenetwork which, whencomparecdgainsthe samecor-
rectpredictionsproduceda meandivergenceof 0.025,a
distanceof 0.081,anda cosineof 0.991,even thoughit
wastrainedon only 10,000differentsentencescf. over
250,000sentencefor the empiricalmodel). Thus,asfar
aswe cantell, our network learnedgrammarRr atleastas
well underthe comple trainingregimenasElman’s net-
work did underthe simpleregimen.

BecausegrammarR hasso few constraints,it might
be thoughtthat this is a moredifficult taskthanlearning
a grammarwith full semantics.lt is true that the prob-
lem spacebecomeamore sparseas we add constraints,
andtheentropy of the optimal predictionsis higherwith-
outtheconstraintbecausenorealternatvesarepossible.
However, the amountof informationthat mustbe stored
to formulatean accuratepredictionis much lower with-
out semantics.Althoughthe predictionerrorwhenmea-
suredagainstthe actualnext word is likely to be higher

for the purely syntacticgrammay the error when mea-
suredagainstthe optimal distribution is lower. This is

reflectedby thefactthatthe network achieredanaverage
divergenceerrorof 0.025in this simulationversus0.093
for the classk languagewith full semanticconstraintsn

Simulation.

Whenthe network wastrainedusing parametersimi-
lar to thosechoserby Elman,it failedto learnadequately
settlinginto badlocal minima. The network consistently
reachedh divergenceerrorof 1.03underthe simpletrain-
ing regimen and 1.20 under the comple regimen, re-
gardlessof the initial randomweight values. In terms
of city-block distancetheseminimafall at1.13and1.32
respectiely—muchworsethantheresultsreportedcoy El-
man. Obsenation of the network in the simple condition
revealedthat it wasableto learnonly the second-order
statisticoof thelanguageandeventhesewerenotlearned
particularlywell. The network learnedhattheword who
couldonlyfollow anoun,but notthatasingulatheadhoun
couldneverbefollowedby anothemounor a plural verh
Ontheotherhand,in the complex condition,the network
learnedonly the first-order statistics,giving predictions
which approximatedhe overall word frequenciesegard-
lessof context. Examinationof the connectionweights
revealedthatall inputweightsandbiasego thethreehid-
denlayershad approachedero. It is not clearwhy we
find suchpoor performancewith what we believe to be
similartrainingmethodgo thoseusedby Elman.

We did, however, obtain successfulearningby using
thesameparameterbut simply increasingheweightini-
tialization rangefrom +0.001 to +1.0, althoughperfor
manceundertheseconditionswas not quite as good as
with all of ourparameterandmethodsEvenso,weagain
found a significantadvantagefor the complex regimen
over the simpleregimenin termsof meandivergenceer-
ror (meanof 0.122vs.0.298 respectiely; Fy 2o =121.8,
p < .001).

Giventhatthe strengthof initial weightsappeardo be
a key factorin successfulearning,we conducteda few
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Figure6: Sumsquarederrorproducedby the network on
the testing set at eachepochof training on corpusRy5
underthe complex regimen,asa function of the rangeof
initial randomweights.

additionalrunsof the network to examinetherole of this
factorin more detail. The networks weretrainedon 25
epochsof exposureto corpusRys underthe complex reg-
imenusingparametersimilar to EIman’s, althoughwith
afixedlearningrateof 1.0(i.e., without annealing).Fig-
ure ?? shavs the sum squarederror on the testing cor-
pusover the courseof training. It is apparenthatlarger
initial weightshelp the network breakthroughthe first-
orderplateauwhich lies at an error valueof 0.221. Per
formancewas remarkablysensitve to rangesof initial
weightsaround+0.1. It isinterestinghatthenetwork can
remainat the plateaufor up to twenty epochsprocessing
200,000sentencegaboutl.2 million words),beforesuc-

cessfullybreakingthrough.

3.3 Additionalmanipulations

Although we have yet to find conditionsunder which
startingwith simplified inputs aided successfulearning
of a simplerecurrentnetwork, thereare certainly situa-
tionsin which this is the case.lIt is possiblethatthe sim-
plicity of our languagesreatedan unnaturaladvantage
for the complec regimen. What, then, is requiredto cre-

ateataskin which startingsmallis helpful,andaresuch

tasksreasonablapproximation®f naturallanguagepro-
cessing?To answerthis questionwe performedtwo ad-
ditional manipulationspne involving the removal of all
constraintson embeddecdtlausesand one extendingthe

taskto alanguagewith 100%comple sentences.

3.3.1 Uninformativeembeddings

In grammarA, as well asin Elmans grammay verbs
in subject-relatie embeddedlausesvereconstrainedo
agredn numbewith themodifiednoun.We mightexpect
thatthis partialinformationwasresponsibldor theability
of the networkstrainedin the complex conditionto learn
thenoun-erbdependenciespanningheembeddingsTo
testthis, we constructeda nev grammay A’, which was
similarto A with theexceptionthatall constraintsinclud-
ing numberagreementywereremoved on the contentsof
embeddedlauser betweemounsandverbswithin rel-
ative clauses. Full semanticand agreementonstraints
were left intact only within the main clause. This was
doneto assessheability of the network to learnthe diffi-
cult mainverbpredictionwith no supportfrom preceding
wordsotherthanthemainnounitself. As before fourver
sionsof the grammarwere produced rangingfrom 0%
to 75% comple. A separatdestingcorpuswas gener
atedfrom the samegrammarasthe last training corpus.
Twenty trials eachof the complex andsimpleconditions
wereperformed.Thesametrainingparameterandexpo-
sureswereusedasin Simulationl.

Analysisof thebest16 of 20trials revealedanaverage
divergenceerrorof 0.080in thesimpleregimenand0.079
in the comple regimen (F' < 1, n.s.). Therefore,even
in the casewhereall constraintson the relative clauses
areremoved, startingsmall doesnot prove beneficial,al-

thoughit is nolongerahindrance.

3.3.2 100%comple sentences

Although Elman (1991) limited the compositionof his
corporato 75% comple, his later paper(Elman, 1993)
reportssimulationswhich addeda fifth corpus,consist-

ing entirely of complex sentences. While a language
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composecentirely of complex sentencess not a realis-

tic modelof English,it is certainlytrue that the current
grammarsverlookmary compleitiesof naturalEnglish.

Therefore,one might view this 100% comple language
asa surrogatgfor onein which nearlyall sentenceson-

tain somecomplex grammaticaktructurejf notarelatve

clauseperse.

In addition to the original four training corporafor
grammaticaklassesE, A, andA’, a fifth, entirely com-
plex corpuswasgeneratedor eachof theseclassegdi.e.,
E100, A100, @andA/ ), alongwith correspondingesting
corpora. The samelearningparametersvere usedasin
Simulation1. In the simple regimen, the network was
trainedfor five epochson eachof the first four corpora
andthen for 10 epochson the all-complex corpus,fol-
lowed by onemoreepochat the reducedearningrate of
0.0003.In the comple< regimen,the network wassimply
trainedon thefifth corpusfor 30 epochdollowedby one
epochatthereducedearningrate.

Despitethe elimination of all simple sentencegrom
thefinal corpusthe network shavedno advantagefor the
simpleregimenon grammarclasse€ andA. For E, the
comple regimenproducedan averagedivergenceon the
best16 of 20 trials of 0.112comparedvith 0.120for the
simpleregimen(Fi 22 = 1.46,p > .2). For A, thecomple
regimenyielded an error of 0.078 comparedwith 0.081
for simpleregimen(Fi 22 = 1.14,p > .2). By contrastfor
classA’, in whichtherewereabsolutelyno constraintex-
ceptin themainclausethesimpleregimenoutperformed
the complex regimen (meansof 0.064vs. 0.105,respec-
tively; Fi 22 = 6.99,p < .05). Therefore,startingsmall
can be beneficialin certain circumstances.We would,
however, arguethat A}, is not at all representatie of
naturallanguageijn which relative clausesarehighly de-
pendenbnwhatthey aremodifyingandsimplesentences
arequitecommon.

In summaryon a grammaressentiallyidenticalto that
usedby Elman (1991, 1993), we found a robust adwan-
tagefor training with the full compleity of thelanguage
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from the outset. Although we cannotdirectly compare
the performanceof our network to that of EIman's net-
work, it appearsik ely thatthecurrentnetwork learnedhe
taskconsiderabhpetterthanthe empiricalmodelthatwe
usedfor evaluation.By contrastthe network wasunable
to learnthe languagén eitherthe simpleor the complex
conditionwhenwe usedparametersimilar to thoseem-
ployed by Elman. However, increasingthe rangeof the
initial connectionweightsallowed the network to learn
quitewell, althoughin this casewe againfound a strong
adwantagefor startingwith the full grammar It waspos-
sibleto eliminatethis advantageby removing all depen-
denciesbetweenmain clausesand their subclausesand
evento reverseit by trainingonly on comple sentences.
However, thesetrainingcorporabearfarlessresemblance
to the actualstructureof naturallanguagehando those
which producea clearadwantagefor training on the full

compleity of thelanguagdrom the beginning.

4 Simulation 3: Progressive memory

Elman(1993)arguedthathis finding thatinitially simpli-

fied inputs were necessaryor effective languageearn-
ing wasnotdirectly relevantto child languageacquisition
becausein his view, therewaslittle evidencethatadults
modify thegrammaticaktructureof their speectwhenin-

teractingwith children(althoughwe would disagreesee,
e.g.,Gallavay & Richards,1994; Snav, 1995; Sokolov,

1993). As analternatve, EImansuggestedhatthe same
constraintcould be satisfiedif the network itself, rather
thanthe training corpus,wasinitially limited in its com-

plexity. Following Newport's “less is more” hypothesis
(Newport, 1990; Goldowsky & Newport, 1993), EIman
proposedhat the gradualmaturationof children's mem-
ory and attentionalabilities could actually aid language
learning. To testthis proposal,ElIman (1993) conducted
additional simulationsin which the memory of a sim-

ple recurrennetwork (i.e., the procesf copying hidden

activationsonto the context units) wasinitially hindered
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and then allowed to graduallyimprove over the course
of training. Whentrainedon the full compleity of the
grammairfrom the outset,but with progressiely improv-
ing memory the network was againsuccessfubt learn-
ing the structureof the languagewhich it had failed to
learnwhenusingfully maturememorythroughoutrain-
ing. In this way, Elman’s computationafindings dove-
tailed perfectlywith Newport’'s empiricalfindingsto pro-
videwhatseemedik e compellingevidencefor theimpor-
tanceof maturationakonstrainton languageacquisition
(seege.g.,Elmanetal., 1996,for furtherdiscussion).
Given that the primary computationakupportfor the
“less is more” hypothesiscomesfrom Elman’s simula-
tions with limited memoryratherthanthosewith incre-
mentaltraining corpora,it is importantto verify that our
contradictoryfindings of an adwantagefor the complex
regimenin Simulationsl and 2 also hold by compari-
son with training under progressiely improving mem-
ory.” Accordingly, we conductedsimulationssimilar to
thoseof Elman,in which a network with graduallyim-
proving memorywastrainedonthefull semanticallycon-
strainedgrammay E, aswell ason the replicationgram-
mar, R, usingboth EIman’s andour own training param-
eters. As for Simulationl, ary differencesetweenour

methodsandElman’s arementionedexplicitly.

4.1 Method

In his limited-memorysimulation,EIman (1993)trained
a network exclusively on the complec corpus,which he
hadpreviously foundto beunlearnablelt is unclearfrom
the text, however, whetherhe usedthe corpuswith 75%
or 100%complex sentencem this seconcsimulation.As
a modelof limited memoryspan,the recurrentfeedback

providedby the contet layerwaseliminatedperiodically

“Goldavsky & Newport (1993) provide anillustration of how ran-
domly degradedinput could aid learningin a morphology-lile associa-
tion task. However, theresultsappeato dependargely on their useof
a learningmechanisnthat collectsco-occurencestatisticsratherthan
perhapsmore appropriatecorrelations It is not clearwhethersimilar
resultscould be obtainedin a mechanismattemptingto learn natural
languagesyntax.

during processinduy settingthe activationsat this layer
to 0.5. For the first 12 epochsof training, this wasdone
randomly after 3—4 words had beenprocessedwithout
regardto sentencdoundariesFor the next 5 epochshe
memorywindow wasincreasedo 4-5words,thento 5-6,
6—7,andfinally, in thelaststageof training,the memory

wasnhotinterferedwith atall.

In the currentsimulation,the training corpusconsisted
of 75%comple sentenceslthoughasmentionedabove,
Elmansmayhave extendedo 100%complexity. Like El-
man,we extendedhefirst periodof training, which used
a memorywindow of 3—4 words, from 5 epochsto 12
epochsWe thentrainedfor 5 epochseachwith windows
of 4-5and5-7 words. The lengthof the final period of
unrestrictednemorydependedn the training methods.
Whenusingourown methodgseeSimulation2), aswhen
trainingonthefinal corpusin thesimpleregimen,this pe-
riod consisteaf 10epochdollowedby onemorewith the
reducedearningrate. Whentrainingwith ourapproxima-
tion of EIman’s methodson grammarR, this final period
wassimply five epochdong. Thereforeunderboth con-
ditions,thememory-limitednetwork wasallowedto train
for atotal of 7 epochsmorethanthe correspondindull-
memorynetwork in Simulationsl and2. Whenusingour
methods|earningratewasheldfixeduntil thelastepoch,
asin Simulationl. With EIman’s method we reducedhe

learningratewith eachchangen memorylimit.

4.2 Resultsanddiscussion

Although he did not provide numericalresults, Elman
(1993) reportedthat the final performancewas as good
asin the prior simulationinvolving progressie inputs.
Again, this was deemeda succesgelative to the com-
plex, full-memoryconditionwhich wasreportedlyunable
to learnthetask.
Usingourtrainingmethodsonlanguager, thelimited-
memoryconditionresultedin equivalentperformanceo

thatof the full-memory condition,in termsof divergence
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error (meansof 0.027 vs. 0.025, respectiely; Fi 22 =
2.12,p > .15). Limited memorydid, however, provide a
significantadvantageover thecorrespondingrogressie-
inputs condition from Simulation2 (mean0.036; Fi 22
= 24.4,p < .001). Similarly, for languageE, the limited-
memoryconditionwasequivalentto thefull-memorycon-
dition (meanof 0.093for both; F' < 1) but betterthanthe
progressie-inputsconditionfrom Simulation2 (meanof
0.115;F} 55 = 31.5,p < .001).

With EImanistrainingmethodon grammaiR, thenet-
work with limited memory consistentlysettledinto the
samdocal minimum,with adivergenceof 1.20,asdid the
network with full memory(seeSimulation2). Usingthe
sameparameterbut with initial connectiorweightsin the
range+1.0,thelimited-memorynetwork againperformed
equivalently to the network with full memory(meansof
0.130vs.0.122 respectiely; Fi 22 = 2.39,p > 0.10),and
significantlybetterthanthe full-memory network trained
with progressie inputs(meanof 0.298; F 2> = 109.1,p
< .001).

To summarizein contraswith EImansfindings,when
training on the fully complex grammarfrom the outset,
initially limiting the memoryof a simple recurrentnet-
work providedno advantageover trainingwith full mem-
ory, despitethe factthatthe limited-memoryregimenin-
volved 7 moreepochsof exposureto thetraining corpus.
On the other hand, in all of the successfukonditions,
limited memorydid provide a significantadvantageover
graduallyincreasingthe compleity of the training cor
pus.

5 General discussion

Basedon the apparentack of alundantexplicit negatve
evidenceprovided to childrenduring languagdearning,
andtheformallearnabilityresultsof Gold (1967)andoth-
ers, it is often assumedhat innatelinguistic constraints
arerequiredfor effective languageacquisition.However,

languagdearningis possibleusingimplicit negative evi-

dencederivedfrom implicit predictionswithin a stochas-
tic languageervironment. In fact, EIman (1991, 1993)

demonstratethatarecurrentonnectionishetwork could

learnthe structureof a pseudo-naturdanguagebasedon

continually predictingthe next word to occurin a large

corpusof sentences.Learningwas effective, however,

onlyif eitherthetrainingsentencesrthenetwork’'smem-
ory wereinitially limited andgraduallyincreasedn com-

plexity. EImansfindingsseemnto imply thatstandaradon-

nectionistassumptionareinsufiicientfor languagdearn-

ing, andadditionalconstraints—perhagmsednmatura-
tional factors(Newport, 1990)—muste introduced(see
Elmanetal., 1996,for discussion).

Thefirst simulationof the currentwork demonstrated,
to the contrary that it is possiblefor a standardsimple
recurrentnetwork to gainreasonabl@roficieng in alan-
guageroughly similar to that designedby Elman with-
out stagednputsor memory In fact,therewasa signifi-
cantadwantageor startingwith thefull languageandthis
adwantageincreasedislanguagesveremademorenatu-
ral by increasinghe proportionof clausesvhich obeyed
semanticconstraintg(seealso Cleeremant al., 1989).
Theremay, of course,be othertraining methodswhich
would yield even better performance. However, at the
very least,it appearghat “starting small” is not a robust
phenomenoin simplerecurreninetworks.

In order to identify the factorsthat led to the disad-
vantagefor startingsmall, we returnedto a more direct
replicationof Elmans work in Simulation2. Using El-
man’s parametersye did find what seemedo be anad-
vantagefor startingsmall, but the network failed to suf-
ficiently masterthe taskin this condition. We do not yet
understandvhat led ElImanto succeedn this condition
wherewe failed. One obsenation madein the course
of thesesimulationswas that larger initial randomcon-
nectionweightsin the network werecrucialfor learning.
We thereforereappliedElman’s training methodsbut in-
creasedhe rangeof the initial weightsfrom +0.001 to

+1.0. Both this conditionandour own training parame-
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tersrevealeda strongadwantagefor startingwith thefull
language.

Finally, in Simulation 3 we examinedthe effect of
progressie memorymanipulationssimilar to thoseper
formedby Elman (1993). It was found that, despitein-
creasedraining time, limited memoryfailed to provide
an adwvantageover full memoryin ary condition. Inter
estingly training with initially limited memorywasgen-
erally lessof a hindranceto learningthan training with
initially simplifiedinput. In all casesthough,successful
learningagainrequiredthe useof sufiiciently largeinitial
weights.

The dependencef learningon the magnitudef ini-
tial weightscanbe understoodn light of propertiesof the
logistic activation function, the back-propagatiomearn-
ing procedureandthe operationof simplerecurrentnet-
works. It is generallythoughtthat smallrandomweights
aid errorcorrectinglearning in connectionistnetworks
becausdhey put unit activationswithin the linear range
of thelogistic functionwhereerrorderivatives,andhence
weight changes,will be largest. However, the error
derivativesthat are back-propagatetb hiddenunits are
scaledby their outgoingweights;feedbackio the restof
the network is effectively eliminatedif theseweightsare
too small. Moreover, with very smallinitial weights,the
summednputsof unitsin thenetwork areall almostzero,
yielding activationsvery closeto 0.5 regardlesf thein-
put presentedo the network. This is particularly prob-
lematicin a simplerecurrentnetwork becausehencon-
text representation&opiedfrom previous hiddenactiva-
tions) containlittle if any informationaboutpreviousin-
puts. Consequentlyconsiderablyextendedtraining may
berequiredto accumulatesufiicientweightchangeso be-
ginto differentiatesventhesimplesdifferencesn context
(seeFigure??). By contraststartingwith relatively large
initial weightsnotonly preseresthe back-propagateer-
ror derivatives but also allows eachinput to have a dis-
tinctandimmediatémpacton hiddenrepresentationsnd,

hence on contet representationsAlthoughtheresulting

patternamay not be particularlygoodrepresentationor
solvingthetask(becaus¢heweightsarerandom)they at
leastprovide an effective startingpoint for beginning to
learntemporaldependencie$.

In the remainderof this article, we discussother ap-
parentdemonstrationsf theimportanceof startingsmall,
andwhy recurreninetworks canlearneffectively without
introducingthis constraintWe thenconsidettheimplica-
tionsof our findingsfor argumentsconcerninghe useof
implicit negative evidenceandthe needfor maturational
constrainton languageacquisition.

5.1 Previousreplications

Therehave beena numberof informal reportsof replica-
tionsof EIman’s basicfinding of anadvantagefor starting
small. However, acommonfactorin thesesimulationsap-
pearsto bethatnetworkstrainedexclusively on complec
inputswerenot allowed sufiicienttrainingtime giventhe
initial randomweights. As we shavedin Figure??, it is
possiblefor anetwork in thecomplex conditionto remain
seeminglyentrenchedn alocal minimumfor sometime
beforebreakingthroughandattainingbetterultimateper
formancethana network trainedin the simple condition
for anequialentperiod. It maybethat,in suchapparent
replications,networks trainedin the complex condition
wereterminatedeforethis breakthrougttould occut
Another problem may be that the learning parame-
terschoserresultedin pooroverall performancdor both
training regimens,in which case,it would be unwiseto
concludethatapparentifferencesn performanceeflect
meaningfuladvantagesfor one regimen over the othet
For example,Joyce (1996) claimedto have successfully
replicatedElman’s results, but his networks obtaineda
final cosineerror of only 0.785 (evaluatedagainstem-
pirically derived probabilities),comparedwith valuesof

8There is the potential complementaryproblem of using initial
weightsso large that unit activationsare pinnedat the extremesof the
logistic functionwhereits deriative vanishesHowever, this problemis
mitigatedto someextentby the useof anerrorfunctionlike divergence
thatgrows exponentiallylargeasthederiative for aunitontheincorrect
sideof thelogistic functionbecomesxponentiallysmall.
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0.852 obtainedby Elman and 0.942 obtainedusing our
parameterin Simulation2. In evaluatingthesenumbers,
notethatassigninguniformprobabilityacrossvordsgives
acosineof 0.419againstheempiricalmodelfrom Simu-
lation 1. Usingdfirst-orderstatisticqi.e, word frequencies)
yields a cosineof 0.476, and using second-ordestatis-
tics (i.e., including the previous word) yields a cosineof
0.780.Thus,Joyce’smodelis doingonly aboutaswell as
the second-ordestatistics. The performancenf Elman’s
network (0.852)is not quite asgoodaswhenusingthird-
order statistics(0.873). Also note that the networks we
trainedwith smallinitial weightsin Simulation2, which
clearlyfailedto learnthe task, neverthelesobtainedco-
sinescoresof 0.604. Thus,Joyce’s networksmaynot, in
fact, have masteredhe tasksuficiently to malke a mean-

ingful comparisorbetweerthetrainingregimes.

Certainly there are situationsin which starting with
simplified inputsis necessaryor effective learningin a
recurrentnetwork. For example,Bengio,Simard& Fras-
coni(1994,seealsoLin, Horne& Giles,1996)reportsuch
resultsfor tasksrequiringa network to learncontingen-
cies which span10-60entirely unrelatedinputs. Such
tasksare, however, quite unlike the learning of natural
language.Similarly, in anextensionof Simulation2, we
introduceda languagean which absolutelyno constraints
existedbetweeranounandits relative clause In thiscase,
both startingsmall and startinglarge wereequally effec-
tive. We alsocreateda final corpusinvolving no simple
sentencesAt this point, we did find a significantadwan-
tagein startingsmall on the languagewith no constraints
on therelative clauses.Thus,startingwith simplifiedin-
putsisindeedadwantageouattimes,thoughwe arguethat
thisadwantagedisappearasanartificial languages made

to bemorelik e naturallanguage.

5.2 Learningin recurrentnetworks

Theintuition behindtheimportanceof startingwith prop-
erly chosensimplified inputsis thatit helpsthe network

to focusimmediatelyon the more basic,local properties
of the language suchaslexical syntacticcateyoriesand
simplenoun-verb dependenciesOncethesearelearned,
thenetwork canmoreeasilyprogresso hardersentences
andfurtherdiscoreriescanbe basedon theseearlierrep-

resentations.

Our simulationresultsindicate, however, that suchex-
ternalmanipulationof thetraining corpusis unnecessary
for effectivelanguagédearning,givenappropriatdraining
parametersThereasonwe believe, is thatrecurrentton-
nectionistnetworks alreadyhave aninherenttendeng to
extractsimpleregularitiesfirst. A network doesnot begin
with fully formed representationand memory; it must
learnto represenandremembeusefulinformationunder
the pressureof performingparticulartasks,suchasword
prediction. As a simplerecurrentnetwork learnsto rep-
resentinformationaboutan input over the hiddenunits,
thatinformationthenbecomesvailableascontext when
processinghe next input. If this context providesimpor-
tant constraintson the predictiongeneratedy the sec-
ondinput,therelevantaspect®f thefirstinputwill bere-
representedverthehiddenunitsand,thus,beavailableas
contet for thethird input,andsoon. In thisway, the net-
work first learnsshort-rangedependenciesstartingwith
simpleword transitionprobabilitiesfor which no deeper
context is neededAt thisstagethelong-rangeconstraints
effectively amountto noisewhich is averagedout across
a large numberof sentencesAs the short-dependencies
are learned,the relevant information becomesavailable
for learning longerdistancedependencies.Very long-
distancedependenciessuch as grammaticalconstraints
acrosgnultiple embeddedlausesstill present problem
for thenetwork in ary trainingregimen.Informationmust
be maintainedacrossthe intervening sequenceo allow
the network to pick up on sucha dependeng However,
theremustbe pressuréo maintainthatinformationor the
hiddenrepresentationwill encodemorelocally relevant
information.Long-distancelependenciearedifficult be-

causethe network will tendto discardinformationabout
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theinitial cuebeforeit becomesiseful. Adding semantic committedto a particularsolutionwithin the premorbid
dependencie embeddedlausesidslearningbecause system,they becomelessable to adaptto relearninga
thenetwork thenhasanincentive to continueto represent new solution after damage. More recently McClelland
themainnoun,notjustfor thepredictionof themainverb, (in press)and Thomas& McClelland (1997) have used

but for the predictionof someof theinterveningmaterial entrenchment-ligeffectswithin aKohonemetwork (Ko-

aswell (seealsoCleeremanstal., 1989)?

It might be thoughtthat startingwith simplifiedinputs

honen,1984)to accountor theapparentnability of non-

native spealersof alanguagdo acquirenative-level per

would facilitatethe acquisitionof the local dependencies formancein phonologicakkills (seee.g.,Logan,Lively,

so that learning could progressmore rapidly and effec-
tively to handlingthe longerrangedependenciesThere
is, hawever, a costto alteringthe network’s training en-
vironmentin thisway. If the network is exposedonly to
simplifiedinput,it maydeveloprepresentationshichare
overly specializedor capturingonly local dependencies.
It then becomedifficult for the network to restructure
theserepresentationghen confrontedwith harderprob-
lemswhosedependenciearenotrestrictedo thosein the
simplified input. In essencethe network is learningin
anervironmentwith a nonstationarprobability distribu-
tion over inputs. In extremeform, suchnonstationarity
canleadto so-calledcatastophic interference in which
trainingexclusively onanew taskcandramaticallyimpair
performanc®napreviouslylearnedaskthatis similarto
but inconsistentvith the new task(see.e.g.,McClelland,
McNaughton,& O’Reilly, 1995; McCloskey & Cohen,
1989; Ratcliff, 1990). A closelyrelatedphenomenoias
beerproposedy Marchman(1993)to accounfor critical
periodeffectsin theimpactof early braindamageon the
acquisitionof Englishinflectionalmorphology March-
man found that the longer a connectionistsystemwas
trainedon the taskof generatinghe pasttenseof verbs,
the poorerit wasat recoseringfrom damage.This effect
wasexplainedin termsof the degreeof entrendimentof

learnedrepresentationsAs representationsecomemore

91t shouldbe pointedout thatthe biastowardslearningshort-before
long-rangedependenciess not specificto simple recurrentnetworks;
fully recurrennetworksalsoexhibit thisbias.In thelattercasejearning
long-rangedependencieis functionallyequialentto learninganinput-
outputrelationshipacrossa larger numberof intermediateprocessing
layers (Rumelhartet al., 1986), which is more difficult thanlearning
acrosdewer layers(seeBengioetal., 1994;Lin etal., 1996).

& Pisoni,1991),andwhy only a particulartypeof retrain-
ing regimenmay prove effective (seealso Merzenichet
al., 1996;Tallal etal., 1996). Thus,therearea numberof
demonstrationthatconnectionishetworksmaynotlearn
aseffectively whentheir training environmentis altered
significantly asis thecasen theincrementatrainingpro-
cedureemployedby Elman(1991).

Periodicallydisruptinga network’s memoryduringthe
earlystagesf learninghasrelatively little effect because
only very local informationis lost, and this information
would have influencedthe processingof only the next
word or two in ary case.As the network developsin its
ability to represenainduseinformationacrosgongertime
spansthememoryis interferedwith less,againleadingto
minimalimpactonlearning.Thereforethis manipulation
tendsneitherto helpnorhinderlearning.

There has beenmuch debateon the extent to which
children experience syntactically simplified language
(see,e.g., Richards,1994; Snav, 1994, 1995, for dis-
cussion). While child-directedspeechis undoubtedly
marked by characteristigprosodicpatternsthereis also
evidencethatit tendsto consistof relatively short,well-
formedutterancesandto have fewer complex sentences
and subordinateclauses(Newport, Gleitman, & Gleit-
man, 1977; seealso Pine, 1994). The study by New-
port and colleaguess instructive here,asit is often in-
terpretedasproviding evidencethatchild-directedspeech
is not syntacticallysimplified. Indeed,theseresearchers
foundno indicationthatmotherscarefullytunetheir syn-
tax to the currentlevel of the child or that aspectsof

mothers’ speechstyleshave a discernibleeffect on the
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child’s learning. Nonethelessjt was clear that child-
directedutterancesaveraging4.2 words, were quite un-
like adult-directecutterancesaveragingl1.9words. Al-
thoughchild-directedspeechncludedfrequentdeletions
andotherformsthatarenot handledeasilyby traditional
transformationajrammarswhetheror notthesesene as
comple«itiesto thechild is debatable.

If childrendo, in fact, experiencesimplified syntax,
it might seemasif our findings suggestthat suchsim-
plificationsactuallyimpedechildren’s languageacquisi-
tion. We do not, however, believe this to be the case.
We have only beenconsideringhe acquisitionof syntac-
tic structure(with somesemanticconstraints) which is
justa smallpartof the overall languagdearningprocess.
Among otherthings, the child mustalsolearnthe mean-
ings of words, phrasesandlongerutterancesn the lan-
guage. This procesds certainly facilitatedby exposing
the child to simple utterancewith simple, well-defined
meanings.We supportNewport and colleagues'conclu-
sionthattheform of child-directedspeechs governedby
a desireto communicatawith the child andnot to teach
syntax. However, we would predictthatlanguageacqui-
sition would ultimatelybe hinderedf particularsyntactic
or morphologicalconstructionswvere avoided altogether
in child-directedspeech.

To this point, our simulation results have sened to
broadertheapplicabilityof connectionishetworksto lan-
guageacquisitionby callinginto questiorthe needfor ad-
ditional, maturation-basedonstraintsin thisrespectpur
conclusionscontrastwith thoseof Elman (1991, 1993).
At a more generallevel, however, we arein complete
agreementvith EIman(andmary others;seeSeidenbey,
1997, Seidenbeg & MacDonald,in press)in adoptinga
statisticalapproachto languageacquisition. Thatis, we
believe that languagelearningdependscritically on the
frequencyvith whichformsoccurin thelanguageindnot

simply on whetheror not they occuratall. As discussed

ferentfrom thosetraditionally adoptedwithin linguistics.
It is thusimportantto considercarefully the relationship
betweenour work and alternatve proposalsconcerning
learnabilityandtherole of negative evidence.

5.3 Learnability

At the coreof Gold's (1967)resultsis a proofthatno in-
terestingclassesof languagesare learnablefrom a text
consistingof only valid sentenceff thetext is generated
by the powerful classof recursve functions,which areall
functionsthatcanbe computedoy a Turingmachine.The
reasonis essentiallythat the generatingunction hasthe
power to confusethelearnerindefinitely Pastexperience
tellsthelearnerelatively little aboutthe future properties
of thetext becauseatary pointthetext couldchangedra-
matically. Gold'sresulthasbeentakenasevidencefor the
impossibility of languagdearningwithout strongercon-
straintson thelearnerandthe classof possibldanguages.
However, anotheof Gold'sresultss generallyignored:
If thetext is generatedby only a primitive recursve func-
tion, evenvery powerful languageelassesrelearnable®
As Gold (1967)putsit, “the primitiverecursvealgorithms
area specialclassof algorithmswhich arenot generalin
the senseof Turing machinesput are generalenoughto
includeall algorithmsnormally constructed{p. 474; see
Hopcroft& Ullmanp. 175for adefinitionof primitivere-
cursive. This positive resultmalesit clearthat relaxing
thestrongassumptionhattexts aregeneratedby fully re-
cursive functionsmay alleviate the learnability problem.
Along theselines, Gold (1967) suggestedhat learning
may be possiblegiven“somereasonabl@robabilisticas-
sumptionconcerninghegeneratiorof text” (p. 461).
Indeed,not long after Gold’s resultswere published,
Horning(1969)shavedthatstochasticontext-freegram-
marsare learnablewith arbitrarily high probability from

101t shouldbe pointedout thatthis positive resultappliesonly to the
ability to acceptalanguageatherthanto decidethelanguageDeciding
a languageindicatesthe ability to judge, in finite time, the grammati-

in thelntroduction this approachs basetnassumptions cality of ary sentencewhereasacceptinga languagerequiresonly the

aboutthe natureof languagethat are fundamentallydif-

ability to say“yes” in finite time if a sentencds grammatical;an ac-
ceptemight never respondf givenanungrammaticasentence.
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only positive examples.Angluin (1988)alsoshavedthat
a fairly weak computabilityrestriction,that the distribu-
tions usedto generatethe text are dravn from a “uni-
formly approximatelycomputable”sequencef distribu-
tions,allow thelearnabilityof recursvely enumerablsets
(seealsoOshersonStob,& Weinstein,1986). Kapurand
Bilardi (1992) proved a similar learnability resultunder
the assumptiorthat the learnerhas somerathergeneral
prior informationaboutthe input distribution. An inter-
estingaspecbf this modelis thatthelearningis notcon-
sideredto be the ability to approximatethe distribution

for how thechild learnslanguagelespiteGold’s negative
results,including acquisitionrules suchasthe “Unique-

nessPrinciple;

competition; “preemptiort;, “blocking,’
the “principle of contrast, “mutual exclusvity,” andthe
“M-constraint” (seeMacWhinng, 1993; Wexler & Cul-
licover, 1980; Pinker, 1984; Marcuset al., 1992; Bow-
erman,1988). It is importantto notethattheseproposals
avoid Gold’s problemby makingafundamentathangen
theassumptionsf themodel. All of theacquisitionrules
are based,in oneway or anothey on someform of im-

plicit negative evidencewhich, in turn, dependsn some

producingthe text but actuallylearningwhich sentences degreeof statisticalstationarityin languageFor example,

are part of the languageand which arenot in the tradi-

tional sense.lt is not clearwhetherAngluin’s formalism
or KapurandBilardi’'s formalismis moreappropriatefor

the caseof naturallanguageIn somesenset is a matter
of whethermneviews performance®r competencagspec-
tively, asprimary.

Onereactionto theseresultsis to arguethata child’s
languageexperiencecannotbe modeledby a stochastic
processFor example Miller andChomsly (1963)argued
thatk-limited Markov sourceswvere poorlanguagemod-
els. Notethatthisis preciselythe samepointthatwe have
madeconcerningthe inadequag of using an empirical
modelto evaluatenetwork performance.lt is important,
however, not to rejecta statisticalapproachto language
basedon the inadequayg of a specific,overly simplesta-
tistical model. In fact, mostempiricalwork on language
relieson theassumptiorthatlanguagecanbe modeledas
astatisticalobject. Wheneerresearchersollectasample
of languagge.g.,the CHILDES databaseMacWhinng,
1991;MacWhinng & Snaw, 1985)andarguethatthesta-
tistical propertieof thatsample suchasthefrequeng of
varioussyntacticconstructionsarein ary way predictive
of future samplesthey areassuminghatthe languagés
generatedy a procesgshatis relatively statisticallysta-
tionary. In doingso,they are,implicitly or otherwise pp-
eratingoutsidethe scopeof Gold'stheorem.

In a similar vein, various proposalshave beenmade

supposehe child hascommitteda morphologicalover

generalizationsuchasusinggoed insteadof went. Rul-
ing out the incorrectform basedon the obsenation that
adultsdo not seemto useit, or useanotherform in its
place,is valid only if languagés producedaccordingo a
reasonablystationaryprobability distribution over forms
or sentences.One way to seethis is to considera verb
like dive with multiple commonpast-tenséorms (dived

anddove). Marcusetal. (1992,p. 9) arguethatbothpast-
tenseforms would be treatedasirregular  The problem
is that the blocking principle eliminatesdived asa past
tenseof dive if dove occursfirst; morewer, dived may
bewithheldarbitrarily long underGold’s assumptionslf

dived is eventuallyacceptedasan alternatve form, then
by the sametoken,goed cannotbe ruled out becauseas
far asthe learnerknows, go may be like dive andgoed

is just beingwithheld. By contrastjf thelanguages rel-
atively stationarythenif thelearneroftenhearswvent and
neverhearsgoed, it is reasonabléo assumehatgo is not
like dive andgoed canberuledout (or, in a probabilistic

frameawvork, madeincreasinglyunlikely).

Thus,our suggestiorthatimplicit negative evidenceis
critical to languageacquisitionis largely in agreement
with mary standardmodels. Indeed, predictioninher
ently implementsa form of competitionbecauset in-
volves representingsomealternatves at the expenseof

others.Wherewe differ is that,in ourview, adequatsen-

26



RohdeandPlaut

LanguagéAcquisitionandStartingSmall

sitivity to the structureof languagdanput canobviatethe
needfor detailedinnatelinguistic constraints. Whether
a “uniquenessule” mustbe explicitly definedaspart of

our innate language-acquisitiosonstraints,or whether
aswe would argue, it emegesfrom moregeneralinfor-

mation processingmechanismsjs a matterfor debate.
In either case,however, we mustacknavledgethat we

areno longerwithin theframework of Gold's theoremor

thestatistics-fre@ssumptionsf traditionalapproache®

linguistics.

It might be arguedthat our networks are not general
learningmechanismsut that their successl|ike that of
humansijs really dueto innateconstraints The networks
do, of course have constraintsuilt into them,including
thenumberof units,theconnectvity patterntheinputand
outputrepresentationshelearningmechanismthedistri-
bution of initial weights,andmary otherfactors.Indeed,
thereis no suchthing asa completelyunbiasedearning
algorithm. At issueis whetherthe constraintseededo
learn languageare consistentacrossmary forms of in-
formation processingn the brain or whetherthey apply
only to languageandwhetherthe constraintsaffect lan-
guageprocessingery generallyor whetherthey arespe-
cific to particularaspectof language(seealso Marcus,
etal., 1992). Critically, noneof the constraintembodied
in the networks are specificallylinguistic—given appro-
priateinput, theidenticalnetworks could have learnedto
performary of awiderangeof tasks.In fact,theonly crit-
ical sensitvity to parametesettingshatwe discovered—
avoiding very smallinitial randomweights—arise$rom
very generalcharacteristicef learningandprocessingn
connectionisinetworks and appliesequallywell in non-
linguisticdomains.

Theseconstraintdiffer markedly from the very spe-
cific rulesthat someproponentf innateconstraintson
languagesuggesareembeddeth thegenome Suchrules
typically make referenceto explicit syntacticandlexical
abstraction@ssumedo beinvolvedin languagerocess-

ing. As Crainnotes,‘linguistsgenerallyfind it reasonable

to supposethat constraintsare innate, domain-specific
properties”(p. 598). For example,Marcuset al. (1992)
proposeheblodking principleas,“a principlespecifically
governingthe relationsamongthe inflectedversionsof a
givensten; (p. 9) in contrastto a moregeneralmecha-
nismthatis sensitve to the frequeng with which mean-
ings mapto particularformsin the input. Along similar
lines,Gropenretal. (1991)posetheuniversalobjectaffect-
ednesdinking rule, by which, “An algumentis encodable
asthedirectobjectof averbif its referentis specifiedas
beingaffectedin a specificway in the semantiaepresen-
tation of theverb” (p. 118),andCrain (1991) proposes
rule thatcontractionmay not occuracrossatraceleft be-
hind by Wh-movement. The point hereis simply to em-
phasizethat suchlanguage-specificonstraintsare qual-
itatively distinct from the more generalparameterghat
control,for instancetheflexibility of weightsin a neural

network.

5.4 Prediction as a source of negative evi-
dence

Rolust nggative resultslike Gold’s are universalin that
they prove that no learning algorithmis guaranteedo
succeedyiven the statedassumptions By contrast,pos-
itive learnabilityresults,suchasthoseobtainedby Horn-
ing (1969)andAngluin (1988), mustbe interpretedwith
more cautionbecausehey shov only that somesystem
canlearnthetask. In particular Horning’sandAngluin’s
methodgely ontheability of thelearnerto explicitly enu-
merateandtestall possiblegrammarsandrely on essen-
tially unboundedesources.It seemsaunlikely that such
assumptionsold for the languageacquisitionprocesses
of the humancognitive system.The importanceof these
results,however, is thatthey demonstrat¢hatlearningis
possiblein the absencef strongconstraintson the lan-
guageandthelearnerandthatakey factorin overcoming
the “logical problem” of languageacquisition(Baker &
McCarthy 1981)is the useof implicit negative evidence.
In orderto berelevantto humanlanguagédearning, it
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must be possiblefor the limited computationalmecha-
nismsof the cognitive systemto take advantageof this
information. We wish to advancethe hypothesighatthe
principalmeangyy whichthe cognitive systenmalesuse
of implicit negative evidenceis throughtheformationand
evaluationof online, implicit predictions(seeJordan&
Rumelhart,1992;McClelland,1994 for discussion)The
typeof predictionsve arehypothesizingieednotbecon-
sciouslyaccessiblenor mustpredictionsbe over a small
setof alternatves. Nor, for that matter is predictionre-
strictedto a probability distribution over localist lexical
units,asin our network model—itis likely thatlinguistic
predictionsoccuron mary levelsof representatiorgcross
phonemideaturesacrossemanti@andsyntacticfeatures
of words, and acrosssemanticand syntacticfeaturesof
entirephrases?

On our view, predictioninvolvesthe operationof stan-
dard processingnechanismsvhich embodythe general
computationalprinciple, in interpretinglinguistic utter
ancespf goingasfar beyondtheliteral input aspossible
in orderto facilitate subsequenprocessingdseeMcClel-
land,St.John,& Taraban1989).A clear if simplified,in-
stantiatiornof this principleis the Cohortmodelof spolen
word recognition(Marslen-Wlson, 1987),in which com-
petingwords are eliminatedfrom contentionas soonas
informationis receved which is inconsistentwvith them.
A natural (and more robust) extensionof this approach
wouldbeto proposehatthesystenmaintainsandupdates
in realtime a probability distribution over wordsreflect-
ing the likelihoodthat eachword is the onebeingheard.
Suchadistributionis exactly whatwould emegefrom at-
temptingto predictthe currentword asearly aspossible.

11t might seemthat predictioncan operateonly over localistrepre-
sentationsbut this is not necessarilyrue. A predictionover distributed
representationsantake theform of aweightedaverageof therepresen-
tationsfor individual items,with theweightingdeterminedy the poste-
rior probabilitydistribution overtheitems. Althoughsuchablendedat-
ternwould be quite differentthanthe representatiofor ary of the con-
tributing items, it would nonethelesbecloserto eachof thecontriluting
items(asafunctionof its weighting)thanto virtually ary unrelatecpat-
tern (Hinton & Shallice,1991, Appendix1). Sucha predictionwould
thusprovide effective context for processingubsequerihput(seee.g.,
Kawamoto,Farrar & Kello, 1994).

More generally accuratepredictionneednot and should
notbebasedntheprecedingurfaceformsalone,asin a
k-limited Markov source.In orderto make accuratepre-
dictionsandto generalizeo novel combinationsof sur
faceforms,the systenmustlearnto extractandrepresent
theunderlyinghigherorderstructureof its environment.
Fodor and Crain (1987) consideredhe useof predic-
tion involving syntacticstructures,but arguedthatit is
problematicon two accounts.First, they contendedhat
“it assumeghat a learnerengagesn a vast amountof
labor ‘on the side’, that he doesnot stopwork whenhe
hasconstructeda set of rulesthat generateall the con-
structionshe hearsanduses”(p. 51). Note,however, that
learningbasedn prediction,on ouraccountjs anon-line
procedurdhatis not “on the side” but aninherentpart of
languageprocessinglt neednotrely on memorizatiorof
entireutterancesporonexplicit compilationof frequengy
countsover hypothesizedulesor structuresnor on dis-
cretedecisionsaboutthe grammaticalityof thosestruc-
tures.As in thecurrentsetof simulationsfeedbaclcanbe
immediate canoperateon a word-by-word or morefine-
grainedbasis,andcanbeincorporatedn agradedashion
into the systems current,working grammar It is truethat
predictionmechanismsnay not stopwork whenonehas
constructech setof rulesthat generateall the construc-
tions one hearsand uses,but thatis a desirablefeature.
Algorithms that learn only from failure (e.g., Berwick,
1987) have beencriticized becauseahey fail to account
for changeghat are obsered after children are parsing
sentencesompetently(Bowerman,1987). By contrast,
learningvia predictionappliesto both successeandfail-
ures,becausehereareno completesuccesseanlessthe
next eventis predictedwith absolutecertainty;every pre-
dictionis likely to beapproximatdo somedegree.
FodorandCrain’s (1987)secondargumentagainsipre-
dictionis thatthelearnemmustknow how to generaliz¢o
appropriatalifferentconstructionsThis is indeedanim-
portantpoint. However, if predictionsaregeneratethased

ontherepresentationahich form thelearners grammay
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feedbackwill generalizeo theextentthattheserepresen-
tations generalizeover structures. Functionally similar
structurewill receve similar feedbackandwill be given
similar representationgllowing generalizatiorof subse-
guentfeedback. In contrast,similar representationfor
different structuresare pulled apartby competingfeed-
back. Inferring the grammarof a naturallanguagere-
quiresthe ability to form broadgeneralizationsvithout
sacrificingsensitvity to subtledistinctionsandcontradic-
tions. This kind of processingnay not be amenableo
a cleandescriptionin the traditionalsensebut it is what

connectionistearningsystemsexcel at.

5.5 Lateexposueandsecondanguaes

Elman’ (1991, 1993) computationafindings of the im-
portanceof startingsmall in languageacquisitionhave
beeninfluential in part becausahey seemedo corrob-
orateempirical obsenationsthat languageacquisitionis
ultimately more successfuthe earlierin life it is begun
(seeLong, 1990). While older learnersof either a first
or a secondlanguageshaw initially fasteracquisition,
they tend to plateauat lower overall levels of achieve-
mentthando youngerlearners.The importanceof early
languageexposurehasbeencited as an argumentin fa-
vor of eitheraninnatelanguageacquisitiondevice which
operatesselectvely during childhoodor, at least,genet-
ically programmedmnaturationof the brain which facili-
tatedanguagdearningin childhood(Johnsor& Newport,
1989; Newport, 1990; Goldowvsky & Newport, 1993). It
hasbeenarguedthat the fact that late first- or second-
languagdearnersdo not reachfull flueng is strongev-
idencefor “maturationally scheduledianguage-specific
learningabilities” (Long, 1990, p. 259, emphasisn the
original).

We would argue,however, thatthe dataregardinglate
languageexposure can be explained by principles of
learningin connectionistnetworks without recourseto

maturationathange®r innatedevices.Specifically adult

learnersmay not normally achieve flueng/ in a second
languageébecauseheir internalrepresentationsave been
largely committedto solving otherproblems—including,
in particular comprehensiomnd productionof their na-
tivelanguagdseerlege,1992;Flege,Munro,& MacKay,
1995).By contrastthe child ultimatelyachievesa higher
level of performancébecausdis or herresourcesireini-
tially uncommitted Thisidea,which accordsvith Quartz
and Sejnavski’s (1996) theory of neural constructivism
is certainlynotanew one,but is onethatseemgo remain
largely ignored(althoughseeMarchman,1993; McClel-
land,in press).Onthisview, it seemsunlikely thatlimita-
tionsin achild’scognitiveabilitiesareof significantbene-
fit in languageacquisition.While adults’greatermemory
andanalyticalabilitiesleadto fasterinitial learning these
propertiesneednot be responsibldor the lower asymp-
totic level of performancechiered,relative to children.

Along similar lines, the detrimentalimpact of de-
layedacquisitionof a first languagemay not implicatea
language-specifisystemthat hasshutdown. Rather it
may be that, in the absencef linguistic input, thosear-
easof the brainwhich normally becomenvolvedin lan-
guagemayhave beerrecruitedo performotherfunctions
(see,e.g., Merzenich& Jenkins, 1995, for relevant evi-
denceanddiscussion).While it is still sensibleto refer
to a critical or sensitve periodfor the acquisitionof lan-
guage,in the sensethat it is importantto startlearning
early, the existenceof a critical period neednot connote
specificlanguage-acquisitiodevices or geneticallypre-
scribedmaturationakchedules.

Indeedsimilar critical periodsexist for learningto play
tennisor amusicalinstrumentRarelyif everdoesanindi-
vidual attainmasterfulabilities at eitherof thesepursuits
unlessthey begin at an early age. And certainlyin the
caseof learningthe pianoor violin, remarkableabilities
canbeachievedby late childhoodandarethusnot simply
theresultof the mary yearsof practiceaffordedto those
who startearly Onemightaddthatno specieotherthan

humanss capableof learningtennisor theviolin. Never-
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thelessyve would not supposéhatlearningtheseabilities
dependsipondomain-specificmnatemechanismsr con-
straints.

While generakonnectionisprinciplesmayexplainthe
overall patternof resultsin late languagdearning,con-
siderablework is still neededo demonstraté¢hatthis ap-
proachis sufficient to explain the rangeof relevant de-
tailedfindings. For example,it appearshatvocahularyis
moreeasilyacquiredhanmorphologyor syntax,andthat
secondanguagédearnerdhave variablesucces# master
ing differentsyntacticrules(Johnson& Newport, 1989).
In future work, we intendto develop simulationsthatin-
cludecomprehensioandproductionof morenaturalistic
languagesin orderto extendour approacho addresshe
empiricalissuesin late second-languagkearningandto
allow usto modela wider rangeof aspectof language
acquisitionmoredirectly.

6 Conclusion

If we acceptheassumptionsf Gold’s model(1967),his
theoremsseemto imply thatnaturallanguageshouldnot
be learnable. Although explicit negative evidencemay
sometimede availableto the child in aform thatis suc-
cessfullyutilized, suchfeedbackappeardnsuficient by
itself to overcomeGold’s problem. Therewould thusap-
pearto be two remainingviable solutions which bothin-
volve alteringthe assumption®f the model: Either nat-
ural languagesredravn from a highly restrictedsetand
the propertiesof the possiblenaturallanguagesare en-
codedgenetically or thereis a restrictionon the set of
possibletexts—in particular to thosethat are produced
accordingo reasonabltableprobability distributions.
In their mostextremeforms, thesesolutionsaccordei-
ther with the hypothesisthat languageis learnedby a
highly constrainednechanisnwith little relianceon dis-
tributional propertiesof the input, or with the hypothesis
thatlanguagds learnableby a relatively generalmecha-

nism that relies heavily on statisticalevidencein thein-

put. We believe thatthe latter hypothesids preferableas
astartingpointin thatit embodiesvealer initial assump-
tions, andthatits investigationwill leadmorequickly to
an understandingf cognition and the learningmecha-
nismsof the brain moregenerally We have alreadyseen
thatrelianceon implicit negative evidenceis difficult to
avoid in either framawork, thus bringing them perhaps
thatmuchcloser

Adopting a statisticallearningapproachraisesthe is-
sueof how a cognitively and neurally plausiblemecha-
nismmight actuallyacquiretherelevantknowledgefrom
appropriatelystructuredlinguistic input. Following EI-
man (1991, 1993), we have shavn that simplerecurrent
connectionishetworks canlearnthe structureof pseudo-
naturallanguage$®asedcnimplicit negative evidencede-
rivedfrom performingaword predictiontaskin astochas-
tic environment. Unlike Elman, however, we found that
learningwas most effective when the network was ex-
posedto the full compleity of the languagethroughout
training, and that the advantageof this approachover
“startingsmall” increase@sthelanguagevasmademore
English-like by introducingsemanticonstraints.

Onemajor limitation of the taskin our simulationsis
that the networks are not actually comprehendingonly
learningthe syntaxof the language.As such,thereis no
context or meaningto the utterances.This is not repre-
sentatve of whatis requiredfor languageacquisition but
it may actually malke the subtaskof learningthe gram-
maticalstructureof the languagemoredifficult. Because
context, whetherit is visual or verbal,greatly constrains
thesetof likely utterancests additioncouldsignificantly
facilitatelearningof the grammar Without context, it is
difficult to determinewhetherpredictionerrorsare due
to inadequatesyntacticknowledgeor inadequateseman-
tic knowledge. Familiar contexts clarify the intendedse-
mantics,helpingthe systemovercomethis bootstrapping
problem. We leave it to future researchto determine
whetherthe simulationresultswe have obtainedwith a

mostly syntacticpredictiontaskgeneralize¢o morenatu-
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ral comprehensiotasksandmorerealisticlanguages.

Despitetheir simplicity, our simulationscall into ques-
tion the proposathatlimited cognitive resourcegarenec-
essaryor evenbeneficial for languageacquisition.How-
ever, perhapghe mostimportantaspecof Elman’s work
is reinforced by ours—thatconnectionistsystemscan
learnthestructureof alanguagen theabsencef explicit
negative evidence.We claim that predictionis the princi-
pal mechanisnby which the humancognitive systemis
ableto take advantageof implicit negative evidence.Our
work suggestghat learningthe structureof naturallan-
guagemay be possibledespitea lack of explicit negatve
feedbackdespiteexperiencingunsimplifiedgrammatical
structuresandin theabsencef detailedjnnatelanguage-
acquisitionmechanisms.
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