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Abstract

Traditional approaches to language processing have been
based on explicit, discrete representations which are dif-
ficult to learn from a reasonable linguistic environment—
hence, it has come to be accepted that much of our linguis-
tic representations and knowledge is innate. With its fo-
cus on learning based upon graded, malleable, distributed
representations, connectionsit modeling has reopened the
question of what could be learned from the environment
in the absence of detailed innate knowledge. This paper
provides an overview of connectionist models of language
processing, at both the lexical and sentence levels.

1 Introduction

Although connectionist models have been applied to the
full range of perceptual, cognitive, and motor domains
(see McClelland, Rumelhart, & PDP Research Group,
1986; Quinlan, 1991; McLeod, Plunkett, & Rolls, 1998),
it is in their application to language that they have evoked
the most interest and controversy (e.g., Pinker & Mehler,
1988). This is perhaps not surprising in light of the special
role that language plays in human cognition and culture.
It also stems in part from the considerable difference in
goals and methods between linguistic and psychological
approaches to the study of language. This rift goes deeper
than a simple dichotomy of emphasizing competence ver-
sus performance (Chomsky, 1957)—it cuts to the heart of
the question of what it means to know and use a language
(Seidenberg, 1997).

Traditional approaches to language processing have
been based on explicit, discrete representations which are
difficult or impossible to learn from a reasonable linguis-
tic environment (Gold, 1967). Therefore, it has come to
be accepted that much of our linguistic representations
and knowledge is innate. With its focus on learning based
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upon graded, malleable, distributed representations, con-
nectionism has reopened the question of what could be
learned from the environment in the absence of detailed
innate knowledge. Although the need to learn internal
representations potentially gives connectionist networks
great power and flexibility, it also introduces limitations.
These limitations are important and, ideally, will reflect
limitations observed in human language processing.

From a connectionist perspective, performance is not
an imperfect reflection of some abstract competence, but
rather the behavioral manifestation of the internal repre-
sentations and processes of actual language users: Lan-
guage is as language does. In this regard, errors in perfor-
mance (e.g., “slips of the tongue”; Dell, Schwartz, Martin,
Saffran, & Gagnon, 1997) are no less valid than skilled
language use as a measure of the underlying nature of
language processing. The goal is not to abstract away
from performance but to articulate computational princi-
ples that account for it.

A major attraction of the connectionist approach to lan-
guage, apart from its natural relation to neural computa-
tion, is that the very same processing mechanisms apply
across the full range of linguistic structure. This paper
provides an overview of connectionist models of language
processing, at both the lexical and sentence levels.

2 Lexical Processing

2.1 Phonological development

Although the use of language seems straightforward to
adult native speakers, an infant must solve numerous dif-
ficult computational problems in learning to understand
and produce speech, stemming from the fact that speech
is extended in time, highly variable and, at a morphemic
level, has no systematic relation to its underlying mean-
ing. Moreover, infants must learn to produce comprehen-
sible speech without any direct articulatory instruction or
feedback.

Plaut and Kello (1999) proposed a framework for
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phonological development in which phonology mediates
among acoustic, articulatory, and semantic representa-
tions in the service of both comprehension and produc-
tion. A critical aspect of the approach is that, given the
absence of direct articulatory feedback, learning to pro-
duce speech is driven by indirect feedback derived from
the comprehension system—that is, from the acoustic,
phonological, and semantic consequences of the system’s
own articulations (Locke, 1983; Menn & Stoel-Gammon,
1995; Studdert-Kennedy, 1993). This is accomplished
by learning an internal forward model of the physical
processes that relate articulation to acoustics (Jordan &
Rumelhart, 1992). Such a model is learned by executing
a variety of articulations, predicting how they will sound,
and then adapting the model based on the discrepancy be-
tween this prediction and the actual resulting acoustics.
In the infant, the forward model is assumed to develop
primarily as a result of reduplicated and variegated bab-
bling in the second half of the first year (Vihman, 1996).
Once developed, the forward model can be used to con-
vert acoustic feedback (i.e, whether an utterance sounded
right) into the articulatory feedback necessary to train
speech production (Perkell, Matthies, Svirsky, & Jordan,
1995). An implementation of the framework, in the form
of a simple recurrent network (Elman, 1991a), learned to
comprehend, imitate, and intentionally name a corpus of
400 monosyllabic words, and its speech errors in develop-
ment were similar to those of young children.

2.2 Morphology

Most linguistic domains are quasi-regular in that there is
considerable systematicity between inputs and outputs but
also numerous exceptions. A standard assumption is that
systematic linguistic knowledge takes the form of explicit
rules and that items which violate the rules are handled
by a separate associative mechanism (see Pinker, 1999).
Connectionist modeling provides an alternative view, in
which all items coexist within a single system whose rep-
resentations and processing reflect the relative degree of
consistency in the mappings for different items.

A key battleground in the debate between these two
views of the language system has been the relatively
constrained domain of English inflectional morphology—
specifically, forming the past-tense of verbs. Rumelhart
and McClelland (1986) attempted to reformulate the is-
sue away from a sharp dichotomy between explicit rules
(add –ed; e.g., WALK/WALKED) and exceptions (e.g.,
SING/SANG, DRINK/DRANK, GO/WENT), and toward a
view that emphasizes the graded structure relating verbs
and their inflections. They developed a connection-
ist model that learned a direct association between the
phonology of all types of verb stems and the phonology of
their past-tense forms. Although this initial model had nu-

merous limitations (Pinker & Prince, 1988), many of these
have been addressed in subsequent simulation work (Cot-
trell & Plunkett, 1995; MacWhinney & Leinbach, 1991;
Marchman, 1993; Plunkett & Marchman, 1991, 1993,
1996). Moreover, applications of connectionist models
to aspects of language disorders (Joanisse & Seidenberg,
1999; Hoeffner & McClelland, 1993; Marchman, 1993)
and language change (Hare & Elman, 1995) demonstrate
the ongoing extension of the approach to account for a
wider range of language phenomena.

Derivational morphology has also been a context in
which connectionist models have contrasted with more
symbolic, rule-based accounts. On a distributed con-
nectionist approach, derivational morphology reflects a
learned sensitivity to the systematic relationships among
the surface forms of words and their meanings. Con-
sistent with this perspective, Gonnerman, Andersen, and
Seidenberg (submitted; Seidenberg & Gonnerman, 2000)
have demonstrated graded effects of both semantic and
formal similarity in cross-modal morphological priming.
By the same token, however, findings of non-semantic
morphological priming in morphologically rich languages
like Hebrew (e.g., Frost, Deutsch, & Forster, 2000) are
typically interpreted as being problematic for the con-
nectionist account. To evaluate whether this interpreta-
tion is valid, Plaut and Gonnerman (2000) carried out
simulations in which a set of morphologically related
words varying in semantic transparency were embedded
in either a morphologically rich or impoverished artifi-
cial language. They found that morphological priming
increased with degree of semantic transparency in both
languages. Critically, priming extended to semantically
opaque items in the morphologically rich language (con-
sistent with findings in Hebrew) but not in the impover-
ished language (consistent with findings in English). Such
priming arises because the processing of all items, includ-
ing opaque forms, is influenced by the degree of morpho-
logical organization of the entire system. These findings
suggest that, rather than being challenged by the occur-
rence of non-semantic morphological effects in morpho-
logically rich languages, the connectionist approach may
provide an explanation for the cross-linguistic differences
in the occurrence of these effects.

2.3 Word reading

Many of the issues concerning quasi-regularity in mor-
phological processing also arise in the context of word
reading. As in morphology, the spelling-sound correspon-
dences of English are highly systematic but admit many
exceptions (e.g., HAVE, PINT, YACHT) and, as in morphol-
ogy, researchers have proposed separate mechanisms for
processing regular and exception items (Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001).

2
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Plaut, Seidenberg, McClelland, and Patterson (1996)
developed a series of connectionist simulations in sup-
port of an alternative conception of language knowledge
and processing in which all items coexist within a sin-
gle system whose representations and processing reflect
the relative degree of consistency in the mappings for
different items. Different types of information about
a word—orthographic, phonological, and semantic—are
represented as distributed patterns over separate groups
of units. In performing a task like reading aloud, ortho-
graphic information influences phonological output via
two pathways: a phonological pathway that maps orthog-
raphy to phonology directly (via hidden units), and a se-
mantic pathway that maps first to meaning and then to
phonology.

An early connectionist simulation of the phonologi-
cal pathway (Seidenberg & McClelland, 1989) provided
a good account of word reading but was poor at pro-
nouncing word-like nonwords (e.g., MAVE). Plaut et al.
(1996) showed that the limitations of this preliminary
model stemmed not from any general failing of connec-
tionist networks in quasi-regular domains, but from its use
of poorly structured orthographic and phonological rep-
resentations. When representations were used that con-
dense the regularities between orthography and phonol-
ogy by incorporating graphotactic and phonotactic con-
straints, networks were able to learn to pronounce both
regular and exception words, and yet also pronounce non-
words as well as skilled readers.

Although implementations of the phonological path-
way alone can learn to pronounce words and nonwords
effectively, skilled reading requires the combined sup-
port of both the semantic and phonological pathways.
This consideration has important implications for under-
standing acquired surface dyslexia, which typically arises
from a semantic impairment. Surface dyslexic patients
often misread low-frequency exception words by produc-
ing a more “regular” pronunciation (e.g., reading SEW as
“sue”). Plaut et al. (1996) demonstrated that that surface
dyslexia can arise as a result of the natural limitations of
an intact phonological pathway that had learned to rely
on semantic support, when semantics is impaired by brain
damage. In closely related work, Harm and Seidenberg
(2001) demonstrated how the complementary disorder of
phonological dyslexia—in which nonword reading is im-
paired relative to word reading—can arise as a result of
phonological rather than semantic damage.

Finally, Harm and Seidenberg (1999) showed how the
same framework can account for both normal and disor-
dered reading acquisition. Four issues were examined: the
acquisition of phonological knowledge prior to reading,
how this knowledge facilitates learning to read, phonolog-
ical and non-phonological bases of dyslexia, and effects
of literacy on phonological representation. Compared

with simple feedforward networks, representing phono-
logical knowledge in an attractor network yielded im-
proved learning and generalization. Phonological and sur-
face forms of developmental dyslexia, which are usually
attributed to impairments in distinct lexical and nonlexi-
cal processing “routes,” were derived from different types
of damage to the network.

In summary, connectionist models of lexical processing
have demonstrated that phenomena that appear to require
explicit, stipulated representations, or multiple processing
mechanisms, can instead by captured in a natural fashion
by the basic computational properties of distributed net-
works learning in quasi-regular domains. Indeed, many
of these properties also provide leverage in understanding
language performance at the sentence level.

3 Sentence Processing

Most sentence processing models have been designed to
address one of four major language tasks: parsing, word
prediction, comprehension, or production. The models
have been organized here by the primary task for which
they were designed, rather than in chronological order.

3.1 Parsing

Parsing, or producing a syntactic, structural description
of a sentence from its surface form, is the one sentence
processing task that has received the most attention from
the symbolic community. Thus, it should not be surpris-
ing that many of the connectionist parsing systems found
in the literature are essentially symbolic models imple-
mented transparently in connectionist hardware. Learn-
ing has not played a major role in most of these parsing
models for two main reasons. First, most connectionist
parsing models have been localist, meaning that each unit
represents an explicit state or bit of information. This ar-
chitecture lends itself to hand-designed weight structures
but not to the easy design of effective learning environ-
ments. More critically, teaching a model to produce an ex-
plicit parse of a sentence requires, for most systems, train-
ing data labeled with correct parsing information. Few
believe that such information is actually available to the
child, so models which rely on it are of questionable rele-
vance to human learning.

3.1.1 Localist parsing models

Unlike some of the later, more transparently symbolic
approaches, the first significant proposal for a connec-
tionist model of parsing, Small, Cottrell, and Shastri
(1982), which was based on the ideas of McClelland and
Rumelhart (1981), stresses the importance of interaction
between syntactic information and semantics over more
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standard parsing theories that stress compartmentalism
and serial processing (Frazier, 1979; Fodor, 1983). This
model, implemented in later work (Cottrell, 1985b), is
not actually a full parser but is designed for word-sense
disambiguation. It uses localist units to represent lexical
items, individual word senses, and case roles, and these
units excite or inhibit one another through a set of hand-
designed connections. Because of this, the model is not
easily expandable to larger vocabularies or complex lin-
guistic structures.

Cottrell (1985a) extended the earlier work with the ad-
dition of a full-fledged syntactic parsing network, which
can be generated automatically given a grammar. Con-
cepts are associated with case roles by means of localist
binder units. There is a unit for each concept/role pair and
these units mutually inhibit one another. Units in the syn-
tactic portion of the network represent the non-terminal
symbols of the context-free grammar, and their intercon-
nections reflect the possible productions in the grammar.
The model is interesting in that it is able to process sen-
tences presented in a temporal sequence and makes use of
interacting top-down and bottom-up information. How-
ever, it has a number of limitations. As is a common
problem with other models that make use of case-roles,
the model does not appear capable of handling sentences
with multiple verbs. It can also handle only fixed-length
sentences and requires constituent recognizers with dupli-
cated and possibly non-connectionist control structures.

Several other localist parsing models were produced at
the same time, and are primarily instantiations of sym-
bolic parsers in the hardware of simple, interacting units.
All of these models have difficulty handling recursive,
context-free structure and the potentially long sentences
that can result from it. One solution, adopted by Waltz and
Pollack (1985) and Howells (1988), is to produce a cus-
tomized network architecture on the basis of the grammar
and the actual sentence being parsed. This network then
settles into a structural interpretation of the sentence. Al-
though the implemented model was purely localist, Waltz
and Pollack proposed that concepts should not be repre-
sented by single nodes but by distributed patterns of “mi-
crofeatures,” a suggestion that would be adopted in later
connectionist modeling. The model of Nakagawa and
Mori (1988) also involved generation of the network on-
the-fly, but it did so in the course of parsing, essentially
implementing a left-corner parser. Although on-the-fly
generation of networks is a neat trick, this seems rather
implausible as a model of the human parsing mechanism.

An alternative approach to parsing in localist networks
is to construct a single large network that is able to parse
all sentences, but only up to a fixed length. Aiming to
produce a network that is deterministic, fast, and guar-
anteed to work, Fanty devised a way to implement the
CYK dynamic-programming, context-free parsing algo-

rithm (Younger, 1967) in a localist network. It essen-
tially contains a unit for every pairing of a non-terminal
with a sub-sequence of the sentence. The network op-
erates in two passes: a bottom-up phase in which units
for increasingly longer sub-sequences become active if
their non-terminal could have produced that sequence and
a top-down phase in which units that do not fit within a
coherent parse are silenced. Aside from the fact that it
has an upper bound on sentence length, a major draw-
back of this model is that it is unable to resolve global
parsing ambiguities. Another questionable property is its
extensive redundancy. A model capable of parsing sen-
tences up to length

�
would require roughly
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units

for every non-terminal in the grammar. That is, there is
a different NP unit for every place an NP might occur in
a sentence. Although the model is not able to learn en-
tire grammars, Fanty discussed how small errors could be
corrected through learning and Rager (1992) described a
localist model based on Fanty’s but designed to handle
“extragrammatical,” or slightly incorrect, sentences.

Selman and Hirst (1985, 1994) presented a model that
differs from other early connectionist parsers in that it
uses a variation on the Boltzmann machine (Fahlman,
Hinton, & Sejnowski, 1983). The rules of a context-free
grammar are implemented in the network by means of
syntactic binder units that inhibit one another and excite
other units representing symbols that participate together
in a production. The use of simulated annealing, while
very slow, allows the network to gradually settle into the
correct parse with high probability. But this model, too,
requires sentences to be bounded in length and it relies
on redundant structure. Due to the proliferation of binder
units, the size of the network may grow intractably with
more complex grammars. Furthermore, although the au-
thors suggested it as a next step, this model does not in-
corporate semantic information and it is not clear how it
would deal with syntactic ambiguity.

Charniak and Santos (1987) described another localist
parsing model that differs from the others in its use of a
sliding input window. This allows the network theoreti-
cally to handle sentences of unbounded length but hinders
the ability of the model to process long-distance depen-
dencies, such as those surrounding center-embeddings.
Although the model was successfully implemented for a
very simple grammar, it is not clear that its parsing heuris-
tics would be sufficient to handle more complex gram-
mars. The model also uses parts of speech rather than
lexical inputs and is thus clearly unable to incorporate se-
mantics or resolve syntactic ambiguities.

Because they lack the representational capacity of ei-
ther a true symbolic system or a network with distributed
representations, localist networks are severely impaired as
language processors. The standard solution is to place a
hard limit on sentence length and rely on extensive redun-
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dant structure, and an alternative is to generate the net-
work on the basis of sentence length, which circumvents
the problem of length but renders the model implausible
biologically. Localist models are also heavily dependent
on human design or predefined grammars, with little ca-
pability to learn. With a few exceptions, these models
do not process sentences sequentially, as humans seem to
do. Furthermore, they do not easily permit the inclusion
of semantic or contextual constraints which are important
sources of information in parsing ambiguous sentences
(McClelland, St. John, & Taraban, 1989).

3.1.2 Hybrid and distributed parsing models

While the last decade has seen a number of hybrid con-
nectionist/symbolist parsing models, only a few will be
mentioned here. One trend in such models is the replace-
ment of sub-components within a modular symbolic sys-
tem with trained networks. The CDP model of Kwasny
and Faisal (1990) is a modification of the PARSIFAL de-
terministic parser (Marcus, 1980). Several of the com-
ponents of this rule-based parser were removed and re-
placed with a connectionist network, which was trained
to suggest actions to be taken by the symbolic compo-
nents of the model given the parsing context. Although
the model was reportedly able to process ungrammatical
and lexically ambiguous sentences in an appropriate way,
it is not clear what effect the network component played in
the behavior of the model. A similar approach was taken
by Tepper, Powell, and Palmer-Brown (2001) in design-
ing a shift-reduce parser with connectionist modules but
symbolic control.

Wermter and Weber (1994, 1997) and Weber and
Wermter (1996) were interested in creating a system
that was robust to extragrammatical sentences. Their
SCREEN model is a complex, highly modular, system
with most of the modules consisting of trained networks.
Rather than producing full parse trees, the SCREEN
model generates a flat syntactic and semantic parse. The
model was trained and tested on spontaneous spoken ut-
terances and appears to work quite well. While the overall
modular structure of the network is a symbolic design, the
use of trainable, distributed networks allows for a certain
level of generalization and fault tolerance. However, the
flat parse lacks much of the information necessary to con-
struct a full parse tree and does not confront some of the
problems posed by ambiguities.

The Jain and Waibel (1990) model is essentially a lo-
calist, slot-based network, but it does incorporate learn-
ing and distributed representations at the word level. It
consists of a series of layers representing words, phrases,
clauses, and inter-clausal relationships. These layers are
trained independently with specified targets and there-
fore involve only limited learned, distributed representa-

tions. The model is interesting in its ability to process in-
puts over time, producing expectations of sentence struc-
ture and dynamically revising hypotheses. However, it
only has a fixed number of phrase and clause blocks and
uses weight sharing to generalize learning across phrase
blocks. This appears to cause a difficult tradeoff between
proper generalization and over-generalization.

Another model to note is Stevenson’s more recent pars-
ing model (Stevenson, 1994; Stevenson & Merlo, 1997),
which is based on � theory and is largely symbolic, but
relies on activation-based competition mechanisms, as in
localist network models, to resolve structural ambigui-
ties. The XERIC model of Berg (1992) is also based
on � theory but relies primarily on learned, distributed
representations. XERIC combines a simple-recurrent net-
work (SRN) (Elman, 1990) with a RAAM (Pollack, 1990)
and is able to take words over time and produce a repre-
sentation that can be decomposed into an � parse tree.
This model has the advantage over localist methods that
it can process unbounded sentences with only gradual
degradation in performance. Although it was trained on
a fairly simple grammar, the model is able to parse sen-
tences with rather deep structure. Semantic information
was not included in the original work, but it could theo-
retically be introduced into this model by using a micro-
featural encoding for words at the input. Despite its suc-
cesses, XERIC might not be considered an adequate cog-
nitive model because its hierarchical training procedure,
like that for the RAAM, requires considerable memory
and symbolic control.

Henderson (1994a, 1994b, 1996) described a localist,
non-learning connectionist parser based on temporal syn-
chrony variable binding (TSVB) and inspired by sym-
bolic parsing theories. The main idea behind TSVB is
that variable bindings, such as the bindings of constituents
to thematic roles, can be represented by synchronous fir-
ing of constituent and role representations. The use of
temporal synchrony, rather than something like binding
units, reduces the need for duplicate structure and per-
mits greater generalization. Henderson argued that the
overall architecture is biologically well-motivated. The
model does not itself construct an entire parse tree, but a
sequence of tree fragments with sufficient information to
enable their recombination into a complete tree. Because
it is a deterministic parser, never backtracking on its com-
mitments, and because it is unable to represent disjunc-
tions of interpretations, it is likely that this model would
have great difficulty with ambiguous sentences and suffer
from an overly strong garden-path effect. The main draw-
back of the model is that it is primarily a connectionist
implementation of a symbolic algorithm and lacks many
of the advantages of connectionist networks, including the
ability to learn and make use of multiple weak constraints.

Henderson and Lane (1998) and Lane and Henderson
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(1998) described an extension of the TSVB approach,
known as a simple synchrony network, that can learn to
parse sentences pre-encoded as parts-of-speech. The net-
work takes the part of speech tags for the sentence con-
stituents as input and is trained to produce the parse tree
fragment of any constituent seen so far when that con-
stituent is queried. The network was able to learn to parse
a corpus of written English to a reasonable degree of pro-
ficiency. It is worth noting that TSVB may be identical
in practice to the query mechanisms used in St. John and
McClelland (1992) and Rohde (2002).

Finally, Harm, Thornton, and MacDonald (2000) were
interested in how semantic and statistical regularities af-
fect the parsing process. To begin to address this, they
focused on the parsing of ambiguous N N or N V phrases
such as “the desert trains.” Harm et al. trained a fully re-
current network (Pearlmutter, 1989) to process potentially
ambiguous three-word phrases. As each word was pre-
sented, the network mapped from a distributed represen-
tation of the word’s form to a distributed representation of
its meaning. Also present in the output was an indication
of whether the phrase was an NP or an NP followed by a
verb. Although this model is quite limited in its scope, it
succeeded in demonstrating the desired sensitivity to a va-
riety of factors, including structural constraints, pragmatic
constraints, and lexical frequency and semantic biases.

Aside from the fact that they provide no account of lan-
guage acquisition, symbolic, localist, and hybrid parsing
models that cannot learn are not readily adapted to new
or more complex languages and are generally insensitive
to semantic constraints and other important sources of in-
formation in parsing. On the hand, parsing models that
involve learned, distributed representations generally re-
quire teaching signals in the form of explicit parses, which
are not thought to be available to language learners.

3.2 Word prediction

An alternative to parsing is the more basic, but nonethe-
less quite difficult, task of word prediction. Word predic-
tion is a surprisingly useful ability. It can be the foun-
dation for a language model, which predicts the likeli-
hood that a particular utterance will occur in the lan-
guage and which is a principal component of most speech
recognition systems. The ability to predict accurately is
sufficient to generate the language, and it thus indicates
“weak” knowledge of the grammar underlying the lan-
guage. Some of the most well-known and successful con-
nectionist models of sentence processing are those that
perform word prediction.

Elman (1990, 1991b, 1993) pioneered the use of
simple-recurrent networks (SRNs), also called Elman net-
works for character and word prediction. Elman (1990)
applied an SRN to letter prediction in a concatenated se-

quence of words, demonstrating that the network could
potentially learn to detect word boundaries by identifying
locations of high entropy, where the prediction is diffi-
cult. This work suggests that prediction might be a pri-
mary mechanism used by infants to learn word segmen-
tation. Elman then extended the model to word predic-
tion in a language of simple sentences. Representations
of words that developed at the network’s hidden layer
could be clustered to produce a reasonable classification
of words syntactically and semantically. This indicates
that much of the basic knowledge required for parsing and
comprehension could be extracted from the child’s input
by a prediction mechanism.

Elman (1991b) further extended the model to pro-
cess sentences that potentially involve multiple embedded
clauses. The main goal of this work was to demonstrate
that networks are capable of learning to represent com-
plex, hierarchical structure. As Elman put it, “The im-
portant result of the. . . work is to suggest that the sensi-
tivity to context which is characteristic of many connec-
tionist models, and which is built-in to the architecture of
[SRNs], does not preclude the ability to capture general-
izations which are at a high level of abstraction” (p. 220).

A second major outcome of the work was the find-
ing that the networks were only able to learn corpora of
mostly complex sentences if they first began training on
simple sentences before gradually advancing to a higher
proportion of complex ones. This was developed further
in Elman (1993), where it was shown that the networks
could also learn well if their memory spans were initially
hindered and then gradually allowed to improve. This
finding was thought to be particularly important as it ac-
corded with Newport’s “less-is-more” hypothesis: that a
child’s limited cognitive abilities may actually be a critical
factor in enabling her to, ultimately, learn a first or second
language to a greater degree of fluency than can an adult
(Newport, 1990; Goldowsky & Newport, 1993).

Although these findings were influential and appeared
to have important implications for human language learn-
ing, we re-examined them and discovered that manipu-
lating the training environment or memory span of the
networks does not always facilitate learning and can, in
fact, be harmful (Rohde & Plaut, 1997, 1999). These
studies used a similar network to Elman’s but a range of
languages that differed in their statistical, but not syntac-
tic, properties. The primary finding was that using ini-
tially simplified inputs was, in most cases, a significant
hindrance to the networks. This was particularly true as
the languages were made more natural through the intro-
duction of semantic constraints. Memory impairments of
the sort used by Elman, on the other hand, actually seem
to have little effect on the learning of the network.

Our explanation for this was based on the fact that re-
current networks naturally begin with poor memory which
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they must gradually learn to use as they are exposed to the
environment. The network therefore tends to learn simple
relationships first because it does not yet have the repre-
sentational capacity to handle more complex ones. Thus,
Elman’s staged memory impairments tend to have little ef-
fect because they simply mirror the natural development
of memory. As argued in Rohde and Plaut (in press), “We
believe that the cognitive limitations of children are only
advantageous for language acquisition to the extent that
they are symptomatic of a system that is unorganized and
inexperienced but possesses great flexibility and potential
for future adaptation, growth and specialization.”

Weckerly and Elman (1992) used a similar SRN
model and focused specifically on the difficulty of right-
branching versus center-embedded sentences. They
found that, in accordance with behavioral data, the SRN
showed a preference for sentences involving double right-
branching, subject-extracted relative clauses over those
with double center-embedded, object-extracted clauses.
Furthermore, the network was able to make use of se-
mantic constraints to facilitate word prediction in center-
embedded sentences.

Christiansen (1994) extended the language used by El-
man (1991b) to include prepositional phrases, left recur-
sive genitives, conjunction of noun phrases, and senten-
tial complements. One version of the grammar could
produce center-embedded sentences and a second version
cross-dependencies. In general, the networks performed
rather well on these languages and exhibited behaviors
that largely reflect human comprehension performance on
similar sentences. Christiansen and Chater (1999) further
extended these results and provided more detailed com-
parisons with human performance.

Finally, Tabor, Juliano, and Tanenhaus (1997) (see also
Tabor and Tanenhaus (1999)) performed a number of ex-
periments comparing human and network reading times
on sentences involving structural ambiguities. Reading
times were elicited from an SRN using a novel “dynam-
ical system” analysis. Essentially, the hidden representa-
tions that appear in the network at various stages in pro-
cessing sentences are plotted in a high-dimensional space.
These points are treated as masses that exhibit a gravita-
tional force. To determine the reading time of the network
on a particular word, the network’s hidden representation
for that word is plotted in the high-dimensional space and
then allowed to gravitate among the attractors until a sta-
ble state is reached, with the settling time taken as an in-
dicator of reading time. Although this test-mass settling
process was intended to be a proxy for a true dynamical
system that actually settles into a stable state, no exper-
iments were performed to demonstrate that this is a rea-
sonable simplification of such a model.

3.3 Comprehension

Comprehension models are those that go beyond parsing
to producing a representation of the meaning of a sen-
tence, given its surface form. There are, in fact, relatively
few comprehension models in the literature. This may
be due largely to the difficulty of representing and pro-
cessing semantic information. Concept and phrase mean-
ings involve subtle aspects that cannot easily be captured
in a symbolic or localist system and do not interact in a
cleanly combinatorial fashion. Furthermore, systems able
to manipulate such information do not lend themselves to
top-down design and are better constructed with learning
methods. Therefore, comprehension has largely been the
domain of distributed, connectionist models.

Hinton (1981) discussed one way in which semantic in-
formation and associations could be stored and recalled
using distributed representations, and he pointed out some
of the advantages this has over traditional localist seman-
tic networks and over static distributed representations. A
principal advantage is that associations formed between
items may automatically generalize to semantically sim-
ilar items. This work may have influenced, directly or
indirectly, many subsequent connectionist models of se-
mantics.

One such effort is the well-known model of McClel-
land and Kawamoto (1986). While it does not derive
fully structured representations of sentence meaning, this
model produces thematic case role assignments, which
are thought to be an important step in comprehension.
The proper assignment of case roles does not simply de-
pend on word order but also involves considerations of
word meaning, inflectional morphology, and context. The
model uses stochastic units and a single layer of weights
that is trained using the perceptron convergence rule and
learns to map from the semantic features of the three or
four main constituents of the sentence to the semantic rep-
resentations for the fillers of up to four thematic roles:
agent, patient, instrument, and modifier. The model is
able to resolve lexical and structural ambiguities, handle
shades of meaning, and generalize to novel words. How-
ever, as the authors acknowledged, this was just a first step
which greatly simplified the problem of sentence compre-
hension. The use of static input representations does not
allow the network to process words over time and results
in a hard limit on the complexity of sentences that can be
handled. In particular, this model would be unable to rep-
resent multi-clause sentences without substantial changes.

Perhaps the best known model of sentence comprehen-
sion is the later work of McClelland, St. John, and Tara-
ban (1989) and St. John and McClelland (1992). These
papers described a model that shares many of the goals
of the McClelland and Kawamoto (1986) work but ex-
tends the framework to produce a changing interpretation
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as each constituent is received and to allow the learning
of distributed hidden representations of phrase and sen-
tence meaning. The input half of the model is an SRN that
learns to use a sequence of phrase components to compile
a single message representation, known as the sentence
gestalt, in the form of a trainable hidden layer. The output
half of the model was trained to answer questions about
the sentence in the form of a probe. When probed with a
constituent, the network must respond with the thematic
role played by that constituent, or when probed with a
role, the network produces the constituent that fills that
role. During training, the error that derives from the an-
swers to these probes is backpropagated through the net-
work to influence the formation of the sentence gestalt.

The St. John and McClelland model successfully ex-
hibited many interesting behaviors including the ability to
make use of both syntactic and semantic clues to sentence
meaning, revise its interpretations online, infer missing
or vague constituents, use variable argument structure
frames in both active and passive forms, and generalize
its abilities to novel sentences. However, a major limi-
tation of the model is that it, too, is not able to process
multi-clause sentences, which are of considerable interest
in the study of language. Nevertheless, the St. John and
McClelland model remains a key inspiration for the work
discussed in this paper.

One hindrance to the development of sentence com-
prehension models has been the difficulty of specifying
adequate meaning representations of concepts and sen-
tences. One solution adopted by Allen (1988), St. John
(1992) and Noelle and Cottrell (1995) is to avoid speci-
fying meanings by focusing on language learning in the
service of a task. By grounding language in this way, the
model can be trained to respond to linguistic inputs by
performing an appropriate action. For example, St. John
(1992) trained a simple-recurrent network to take a de-
scription of a scene and a sentence describing a particular
object in the scene and identify the object to which the
sentence refers. The model is able to handle fairly com-
plex inputs including relative clauses and prepositional
phrases and can even handle human-produced sentences
moderately well, but is otherwise severely limited in its
scope.

Miikkulainen and Dyer (1989) trained a backpropaga-
tion network on the same sentences used in the McClel-
land and Kawamoto (1986) study. The network learned
to map from a static representation of the words in the
sentence to a representation of the case role assignments.
The principal difference between this and the earlier study
is that McClelland and Kawamoto hand-designed feature-
based distributed representations for words while the Mi-
ikkulainen and Dyer network learned the word representa-
tions using a representation updating, storage and retrieval
mechanism. The method was later extended to a simple-

recurrent network which accepts the same sentences en-
coded sequentially (Miikkulainen & Dyer, 1990).

Miikkulainen (1990) applied a modular architecture
to comprehending and producing sentences with relative
clauses. The sentences were composed of noun-verb or
noun-verb-noun clauses, separated by commas. The first
module maps from a sequence of words drawn from a sin-
gle clause, or part of a clause if it contains an embedding,
to a slot-based representation of the meaning. A second
network maps from a sequence of clause frames to a static
representation of all the frames in the sentence. Two other
networks perform the inverse mappings. The system was
able to successfully encode and reproduce sentences con-
structed from a very limited vocabulary. The use of a slot-
filler representation for sentence meaning places a hard
constraint on the complexity of sentences that could be
represented by this system. Another limitation is that it re-
lies on markers to distinguish clause boundaries, thus pre-
venting it from handling reduced-relative constructions,
which lack relative pronouns. Nevertheless this appears
to have been the first connectionist comprehension model
able to process complex sentences.

3.4 Production

Sentence production is a mapping from an intended mean-
ing to a sequence of words or sounds. Production involves
such issues as choosing words to convey the appropriate
message, selecting the correct morphemes to obey syn-
tactic and agreement constraints, and modeling the lis-
tener’s knowledge to allow the speaker to avoid redun-
dancy, provide an appropriate level of information, and
produce syntactic forms and prosodic cues that empha-
size important parts of the utterance and avoid ambigu-
ity. Sentence production has received much less attention
than parsing in the symbolist community. Producing the
appropriate phrasing depends on sensitivity to nuances of
meaning that are difficult to capture in a symbolic sys-
tem (Ward, 1991). Thus, some researchers have begun
turning to connectionist approaches to modeling produc-
tion. However, most connectionist language production
models have so far been restricted to the word level, deal-
ing with lexical access and phoneme production, rather
than sentence-level phenomena (Dell, 1986; O’Seaghdha,
Dell, Peterson, & Juliano, 1992; Harley, 1993; Dell, Ju-
liano, & Govindjee, 1993). This section considers the
most notable sentence production networks.

There have been at least three major localist sentence
production networks. Kalita and Shastri (1987, 1994) fo-
cused on the problem of producing the words in a sen-
tence given the thematic role fillers and indications of the
desired voice and tense. Their model, which is a rather
complex localist network, is able to produce simple SVO
sentences in active or passive voice and in several tenses.
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In order to ensure that constituents are produced in the
proper order, the model uses sequencer units to inhibit
nodes once they have performed their duty. It is unlikely
that this model could easily be extended to more com-
plex sentences, particularly those with recursively nested
structures.

Gasser (1988) (see also Gasser & Dyer, 1988) de-
scribed a significantly more ambitious localist model that
produces sentences using elaborate event schemas. The
model, known as the Connectionist Lexical Memory, is
based on interactive-activation principles. Bindings to
syntactic roles are encoded with synchronized firing, as
in TSVB (Henderson, 1994a). Sequencing is accom-
plished using start and end nodes for each phrase struc-
ture, which are somewhat similar to the sequencer units in
Kalita and Shastri’s model. Gasser’s model is designed to
account for a wide range of phenomena, including prim-
ing effects, speech errors, robustness given incomplete
input or linguistic knowledge, flexibility in sequencing,
and transfer of knowledge to a second language. How-
ever, the model was only applied to simple clauses and
noun phrases and does not produce recursive structures in-
volving long-distance dependencies. Again, it is not clear
whether such a localist model could be scaled up to handle
more complex sentences.

The third localist production model, by Ward (1991),
was intended to be “more connectionist” than the previ-
ous attempts, relying on a truly interactive settling pro-
cess and avoiding the need for binder units. One major
limitation of the model, which may apply to the others as
well, is that the network structures used to represent the
intended meaning of the utterance are built on a sentence-
by-sentence basis. Although the model is apparently able
to produce a broader range of sentences, it is still unable
to handle agreement, anaphor, and relative clauses. Ward
acknowledged that a primary drawback of the model is the
difficulty of extending it in all but the most trivial ways,
and he recognized the need for a learning mechanism.

The localist models of sentence production, like their
parsing cousins, suffer from an inability to learn or to han-
dle complex structure without relying on redundancy or
replication mechanisms. However, work on distributed
connectionist models of production has been rather lim-
ited. We have already discussed the comprehension and
production model of Miikkulainen (1990), which was
trained to produce multi-clause sentences based on a slot-
filler representation of its clauses. So far this work has
been restricted to fairly simple domains. The nature of
the representations used appears to limit the ability of the
system to be scaled up to more natural languages. In
earlier work, Kukich (1987) was interested in the abil-
ity of a network to learn to produce stock market reports
given the day’s activity. He trained one network to as-
sociate units of meaning, or sememes, with morphemes

and another network to re-order morphemes. The output
of the first network was an unordered set of word stems
and suffixes, which could be produced accurately 75% of
the time. The morpheme-ordering network did not ac-
tually produce morphemes sequentially but used a slot-
based encoding of order. The results of these simulations
left considerable room for improvement but were encour-
aging given the early state of connectionism.

More recently, Dell, Chang, and Griffin (1999) were
specifically interested in the phenomenon of structural
priming, which leads speakers to preferentially produce
sentences of a particular form, such as passive rather than
active voice, if they have recently heard or produced sen-
tences of similar form. Dell et al. hypothesized that the
mechanism that results in structural priming is the same
procedure used to learn production. Their model takes a
representation of the sentence’s propositional content and
produces the words in the sentence sequentially. Proposi-
tional content is encoded using a slot-based representation
of the clause constituents, and the model was thus able to
produce only simple sentences.

The model was trained to produce either active or pas-
sive sentences based on whether the agent or patient re-
ceived greater emphasis. It was also able to convey recip-
ients using a prepositional phrase or a dative. The model
learned to produce sentences with 94% of the words, or
about 75% of sentences, being correct, and thus was not
as accurate as one might hope. However, the model was
able to match human structural priming data quite well.
The main limitations of this model are that it was applied
only to simple sentences and did not learn distributed con-
text representations.

3.5 The CSCP model

Other than prediction networks, which avoid the issue
of meaning entirely, no connectionist sentence process-
ing models discussed thus far have exhibited all of the
main properties necessary to provide a plausible account
of natural language acquisition. These include the abil-
ity to learn a grammar, to process a sentence sequentially,
to represent complex, multi-clause sentences, and to be
naturally extendable to languages outside of the domain
originally addressed by the designer. The Connectionist
Sentence Comprehension and Production (CSCP) model
of Rohde (2002) was developed to address these limita-
tions.

The CSCP model is essentially a large-scale simple-
recurrent network able to perform both comprehension
and production of complex, multi-clausal sentences using
a subset of English constrained to match English in terms
of its distributional properties. This language involves
such complexities as multiple verb tenses and voices, ad-
verbs and adjectives, prepositional phrase, relative and
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subordinate clauses, and sentential complements. Sen-
tence meanings are composed of a set of propositions
encoded using distributed, featural representations. One
portion of the network, the semantic system, learns to
compress a sequence of these propositions into a single,
static representation of the meaning of the sentence under
the pressure to answer fill-in-the-blank questions about
the stored propositions as in the St. John and McClelland
(1992) model.

The actual comprehension portion of the system then
learns to receive a sequence of words, encoded in a dis-
tributed phonological representation, and output a repre-
sentation of the sentence meaning that can be decoded by
the semantic system. Although the model is provided with
knowledge about sentence meanings and word segmenta-
tion, it must learn to induce the syntax of the language.
Building on the work of Elman (1991b), the comprehen-
sion system is simultaneously trained to predict the next
word in the sentence. At times, the meaning of the sen-
tence is provided to the model in advance, enabling it
to generate much more accurate predictions. This, ulti-
mately, serves as the basis for the model’s sentence pro-
duction. In order to produce a sentence, the message layer
is clamped to the correct meaning and the model predicts
the first word in the sentence. The most strongly predicted
word is selected and fed back into the model’s comprehen-
sion input and it proceeds to produce the next word, and
so on.

Therefore, the model’s comprehension and production
mechanisms are tightly integrated and rely on many of
the same processes. An intrinsic claim is that language
production is learned primarily through formulating im-
plicit predictions while listening and attempting to com-
prehend sentences in one’s language. The CSCP model
has been extensively tested on a variety of tasks, includ-
ing the processing of lexical and structural ambiguities,
and a range of unambiguous sentence types. It is able to
replicate many key aspects of human sentence processing,
including sensitivity to structural frequency, verb argu-
ment structure preferences, inflectional morphology, lo-
cality effects, and semantic plausibility. In production, it
also demonstrates structural priming and number agree-
ment attraction. The model’s sensitivity to particular sta-
tistical factors, and the representations on which this de-
pends, arise naturally from the constraints of its connec-
tionist architecture as it learns to perform the tasks of
comprehension and production as best it can.
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Sweden.

Locke, J. L. (1983). Phonological acquisition and change. New
York: Academic Press.

MacWhinney, B., & Leinbach, J. (1991). Implementations
are not conceptualizations: Revising the verb learning
model. Cognition, 40, 121-153.

Marchman, V. A. (1993). Constraints on plasticity in a con-
nectionist model of the English past tense. Journal of
Cognitive Neuroscience, 5, 215–234.

Marcus, M. P. (1980). A theory of syntactic recognition for
natural language. Cambridge, MA: MIT Press.

McClelland, J. L., & Kawamoto, A. H. (1986). Mechanisms of
sentence processing: Assigning roles to constituents of
sentences. In J. L. McClelland, D. E. Rumelhart, & the
PDP Research Group (Eds.), Parallel distributed process-
ing: Explorations in the microstructure of cognition. Vol-
ume 2: Psychological and biological models (pp. 272–
325). Cambridge, MA: MIT Press.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive
activation model of context effects in letter perception:
Part 1. An account of basic findings. Psychological Re-
view, 88(5), 375-407.

McClelland, J. L., Rumelhart, D. E., & PDP Research Group
the (Eds.). (1986). Parallel distributed processing: Ex-
plorations in the microstructure of cognition. Volume 2:
Psychological and biological models. Cambridge, MA:
MIT Press.

McClelland, J. L., St. John, M., & Taraban, R. (1989). Sen-
tence comprehension: A parallel distributed processing
approach. Language and Cognitive Processes, 4, 287–
335.

McLeod, P., Plunkett, K., & Rolls, E. T. (1998). Introduction to
connectionist modelling of cognitive processes. Oxford,
UK: Oxford University Press.

Menn, L., & Stoel-Gammon, C. (1995). Phonological develop-
ment. In P. Fletcher & B. MacWhinney (Eds.), The hand-
book of child language (p. 335-359). Oxford: Blackwell.

Miikkulainen, R. (1990). A PDP architecture for processing
sentences with relative clauses. In COLING-90: Papers
presented to the 13th International Conference on Com-
putational Linguistics (pp. 3/201–206). Helsinki.

Miikkulainen, R., & Dyer, M. (1990). Natural language pro-
cessing with modular neural networks and distributed
lexicon (Tech. Rep. No. CSD-900001). Los Angeles, CA:
Computer Science Department, University of California.

Miikkulainen, R., & Dyer, M. G. (1989). Encoding input/output
representations in connectionist cognitive systems. In
D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), Proceed-
ings of the 1988 Connectionist Models Summer School
(pp. 347–356). Los Altos, CA: Morgan Kaufman.

Nakagawa, H., & Mori, T. (1988). A parser based on con-
nectionist model. In COLING Budapest: Proceedings of
the 12th International Conference on Computational Lin-
guistics (pp. 454–458). Budapest.

Newport, E. L. (1990). Maturational constraints on language
learning. Cognitive Science, 34, 11–28.

Noelle, D. C., & Cottrell, G. W. (1995). A connectionist model
of instruction following. In Proceedings of the 17th an-
nual conference of the Cognitive Science Society (pp.
369–374). Hillsdale, NJ: Lawrence Erlbaum Associates.

O’Seaghdha, P. G., Dell, G. S., Peterson, R. R., & Juliano,
C. (1992). Models of form-related priming in com-
prehension and production. In R. G. Reilly & N. E.
Sharkey (Eds.), Connectionist approaches to natural lan-
guage processing (pp. 373–408). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Pearlmutter, B. A. (1989). Learning state space trajectories in
recurrent neural networks. Neural Computation, 1, 263–
269.

Perkell, J. S., Matthies, M. L., Svirsky, M. A., & Jordan, M. I.
(1995). Goal-based speech motor control: A theoretical
framework and some preliminary data. Journal of Pho-
netics, 23, 23-35.

Pinker, S. (1999). Words and rules: The ingredients of language.
New York: Basic Books.

Pinker, S., & Mehler, J. (Eds.). (1988). Connections and sym-
bols. Cambridge, MA: MIT Press.

Pinker, S., & Prince, A. (1988). On language and connection-
ism: Analysis of a parallel distributed processing model
of language acquisition. Cognition, 28, 73–193.

12



Rohde and Plaut Connectionist Models of Language Processing

Plaut, D. C., & Gonnerman, L. M. (2000). Are non-semantic
morphological effects incompatible with a distributed
connectionist approach to lexical processing? Language
and Cognitive Processes, 15(4/5), 445-485.

Plaut, D. C., & Kello, C. T. (1999). The emergence of
phonology from the interplay of speech comprehension
and production: A distributed connectionist approach. In
B. MacWhinney (Ed.), The emergence of language (pp.
381–415). Mahwah, NJ: Lawrence Erlbaum Associates.

Plaut, D. C., Seidenberg, M. S., McClelland, J. L., & Patter-
son, K. (1996). Understanding normal and impaired
word reading: computational principles in quasi-regular
domains. Psychological Review, 103, 56–115.

Plunkett, K., & Marchman, V. A. (1991). U-shaped learning
and frequency effects in a multi-layered perceptron: Im-
plications for child language acquisition. Cognition, 38,
43-102.

Plunkett, K., & Marchman, V. A. (1993). From rote learning to
system building: Acquiring verb morphology in children
and connectionist nets. Cognition, 48(1), 21-69.

Plunkett, K., & Marchman, V. A. (1996). Learning from a
connectionist model of the acquisition of the English past
tense. Cognition, 61(3), 299-308.

Pollack, J. B. (1990). Recursive distributed representations.
Artificial Intelligence, 46, 77–105.

Quinlan, P. (1991). Connectionism and psychology: A psy-
chological perspective on new connectionist research.
Chicago: University of Chicago Press.

Rager, J. E. (1992). Self-correcting connectionist parsing. In
R. G. Reilly & N. E. Sharkey (Eds.), Connectionist ap-
proaches to natural language processing (pp. 143–167).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Rohde, D. L. T. (2002). A connectionist model of sentence com-
prehension and production. Unpublished doctoral disser-
tation, Carnegie Mellon University, Department of Com-
puter Science, Pittsburgh, PA.

Rohde, D. L. T., & Plaut, D. C. (1997). Simple recurrent net-
works and natural language: How important is starting
small? In Proceedings of the 19th annual conference of
the Cognitive Science Society (pp. 656–661). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Rohde, D. L. T., & Plaut, D. C. (1999). Language acquisition in
the absence of explicit negative evidence: How important
is starting small? Cognition, 72(1), 67–109.

Rohde, D. L. T., & Plaut, D. C. (in press). Less is less in lan-
guage acquisition. In P. Quinlan (Ed.), Studies in devel-
opmental psychology: Connectionist models of develop-
ment. Charles Hume.

Rumelhart, D. E., & McClelland, J. L. (1986). On learning the
past tenses of English verbs. In J. L. McClelland, D. E.
Rumelhart, & the PDP Research Group (Eds.), Parallel
distributed processing: Explorations in the microstruc-
ture of cognition. Volume 2: Psychological and biologi-
cal models (p. 216-271). Cambridge, MA: MIT Press.

Seidenberg, M. S. (1997). Language acquistion and use:
Learning and applying probabilistic constraints. Science,
275(5306), 1599-1603.

Seidenberg, M. S., & Gonnerman, L. M. (2000). Explain-
ing derivational morphology as the convergence of codes.
Trends in Cognitive Sciences, 4, 353-361.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed,
developmental model of word recognition and naming.
Psychological Review, 96, 523-568.

Selman, B., & Hirst, G. (1985). Connectionist parsing. In
Proceedings of the 7th annual conference of the Cognitive
Science Society (pp. 212–221). Hillsdale, NJ: Lawrence
Erlbaum Associates.

Selman, B., & Hirst, G. (1994). Parsing as an energy minimiza-
tion problem. In G. Adriaens & U. Hahn (Eds.), Parallel
natural language processing (pp. 238–254). Norwood,
NJ: Ablex Publishing.

Small, S., Cottrell, G., & Shastri, L. (1982). Toward connection-
ist parsing. In Proceedings of the National Conference
on Artificial Intelligence (pp. 247–250). Pittsburgh, PA:
AAAI.

Stevenson, S. (1994). A competitive attachment model for re-
solving syntactic ambiguities in natural language pars-
ing. Unpublished doctoral dissertation, Department of
Computer Science, University of Maryland.

Stevenson, S., & Merlo, P. (1997). Lexical structure and parsing
complexity. Language and Cognitive Processes, 12, 349–
399.

St. John, M. F. (1992). Learning language in the service of a
task. In Proceedings of the 14th annual conference of the
Cognitive Science Society (pp. 271–276). Hillsdale, NJ:
Lawrence Erlbaum Associates.

St. John, M. F., & McClelland, J. L. (1992). Parallel constraint
satisfaction as a comprehension mechanism. In R. G.
Reilly & N. E. Sharkey (Eds.), Connectionist approaches
to natural language processing (pp. 97–136). Hillsdale,
NJ: Lawrence Erlbaum Associates.

Studdert-Kennedy, M. (1993). Discovering phonetic function.
Journal of Phonetics, 21, 147-155.

Tabor, W., Juliano, C., & Tanenhaus, M. K. (1997). Parsing in a
dynamical system: An attractor-based account of the in-
teraction of lexical and structural constraints in sentence
processing. Language and Cognitive Processes, 12(2/3),
211–271.

Tabor, W., & Tanenhaus, M. K. (1999). Dynamical models of
sentence processing. In M. H. Christiansen, N. Chater,
& M. S. Seidenberg (Eds.), Special Issue of Cognitive
Science: Connectionist Models of Human Language Pro-
cessing: Progress and Prospects (Vol. 23). Cognitive Sci-
ence.

Tepper, J. A., Powell, H. M., & Palmer-Brown, D. (2001).
Corpus-based connectionist parsing. In The Second
Workshop on Natural Language Processing and Neural
Networks (NLPNN2001). Tokyo.

13



Rohde and Plaut Connectionist Models of Language Processing

Vihman, M. M. (1996). Phonological development: The origins
of language in the child. Oxford: Blackwell.

Waltz, D. L., & Pollack, J. B. (1985). Massively parallel parsing:
A strongly interactive model of natural language interpre-
tation. Cognitive Science, 9, 51–74.

Ward, N. (1991). A flexible, parallel model of natural language
generation. Unpublished doctoral dissertation, Computer
Science Division, University of California, Berkeley, CA.
(UCB/CSD 91/629)

Weber, V., & Wermter, S. (1996). Using hybrid connection-
ist learning for speech/language analysis. In S. Wermter,
E. Riloff, & G. Scheler (Eds.), Lecture notes in artificial
intelligence 1040: Connectionist, statistical, and sym-
bolic approaches to learning for natural language pro-
cessing (pp. 87–101). Berlin: Springer-Verlag.

Weckerly, J., & Elman, J. L. (1992). A PDP approach to pro-
cessing center-embedded sentences. In Proceedings of
the 14th annual conference of the Cognitive Science So-
ciety (pp. 414–419). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Wermter, S., & Weber, V. (1994). Learning fault-tolerant speech
parsing with screen. In Proceedings of the 12th National
Conference on Artificial Intelligence (pp. 670–675). Seat-
tle, WA: AAAI.

Wermter, S., & Weber, V. (1997). SCREEN: Learning a flat syn-
tactic and semantic spoken language analysis using arti-
ficial neural networks. Journal of Artificial Intelligence
Research, 6, 35–85.

Younger, D. H. (1967). Recognition and parsing of context-free
languages in time �

�
. Information and Control, 10(2),

189–208.

14


