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Abstract
Predictionis believed to be an importantcomponentof cog-
nition, particularly in the processingof naturallanguage. It
haslongbeenacceptedthatrecurrentneuralnetworksarebest
able to learnpredictiontaskswhen trainedon simpleexam-
ples before incrementallyproceedingto more complex sen-
tences.Furthermore,thecounter-intuitivesuggestionhasbeen
madethatnetworksand,by implication,humansmaybeaided
during learningby limited cognitive resources(Elman,1991
Cognition). The currentwork reportsevidencethat starting
with simplifiedinputsisnotnecessaryin trainingrecurrentnet-
worksto learnpseudo-naturallanguages.In addition,delayed
introductionof complex examplesis often an impedimentto
learning.Wesuggestthatspecialteachingmethodsandlimited
cognitive resourcesduringdevelopmentmaybe of no benefit
for learningthestructureof naturallanguage.

Introduction
Thequestionof how humansareableto learna naturallan-
guagedespitetheapparentlackof adequatefeedbackhaslong
beena perplexing one. Baker (1979) arguedthat children
do not receive a sufficient amountof negative evidenceto
properlyinfer the grammaticalstructureof language.Com-
putationaltheorysuggeststhat this is indeedproblematic,as
Gold (1967)hasshown that, without negative examples,no
superfiniteclassof languagesis learnable.Theclassof reg-
ular languagesis superfinite,asarecontext-freeandcontext-
sensitive languages.Therefore,unlessthesetof possiblenat-
ural languagesis highly restricted,it would appearthatsuch
languagesare not learnablefrom positive examples. How,
then,arehumansable to learn language?Must we rely on
extensive innateknowledge?

In fact, a frequentlyoverlooked sourceof information is
the statisticalstructureof naturallanguage.Languagepro-
duction can be viewed as a stochasticprocess—somesen-
tencesand grammaticalconstructionsare more likely than
others. The learnercanusethesestatisticalpropertiesasa
form of implicit negativeevidence.Indeed,stochasticregular
languagesandstochasticcontext-freelanguagesare learnable
usingonlypositivedata(Angluin,1988).Onewaythelearner
cantake advantageof thesestatisticsis by attemptingto pre-
dict the next word in an observed sentence.By comparing
thesepredictionsto the actuallyoccurringnext word, feed-
backis immediateandnegative evidencederivesfrom con-
sistentlyincorrectpredictions. Indeed,a numberof studies

have found empiricalevidencethat humansdo generateex-
pectationsin processingnaturallanguageandthattheseplay
anactiverolein comprehension(Neisser, 1967;Kutas& Hill-
yard,1980;McClelland& O’Regan,1981).

Elman (1991, 1993) provided an explicit formulation of
how a learningsystemmight infer thegrammaticalstructure
of a languageon the basisof performinga word prediction
task. He traineda simple recurrentnetwork to predict the
next word in sentencesgeneratedby an English-like artifi-
cialgrammarwith numberagreement,variableverbargument
structure,andembeddedclauses.He foundthat thenetwork
wasableto learnthetaskbut only if thetrainingregimenor
thenetwork itself wasin someway restrictedin its complex-
ity initially (i.e., it “startedsmall”). Specifically, thenetwork
couldlearnthetaskeitherwhenit wastrainedfirst on simple
sentences(without embeddings)and only later on a gradu-
ally increasingproportionof complex sentences,or whenit
wastrainedon sentencesdrawn from the full complexity of
the languagebut with an initially faulty memoryfor context
which gradually improved over the courseof training. By
contrast,whenthenetwork wasgivenfully accuratememory
andtrainedon the full complex grammarfrom theoutset,it
failedto learnthetask.Elmansuggestedthatthelimited cog-
nitiveresourcesof thechild may, paradoxically, benecessary
for effective languageacquisition,in accordancewith New-
port’s (1990)“lessis more”proposal.

This paperreportson attemptsto replicateof someof El-
man’sfindingsusingsimilarnetworksbut moresophisticated
languages.In contrastwith his results,it wasfoundthatnet-
workswereableto learnquitereadilyevenwhenconfronted
with the full complexity of languagefrom the start. Under
no circumstancesdid startingwith simplesentencesreliably
aid learningand, in most conditions,it proved to be a hin-
drance.Furthermore,startingwith the full languagewasof
greaterbenefitwhenthe grammarwasmademoreEnglish-
like by includingstatisticalconstraintsbetweenmainclauses
andembeddingsbasedon lexical semantics.We arguethat,
in the performanceof realistic tasksincluding word predic-
tion in naturallanguage,recurrentnetworksinherentlyextract
simpleregularitiesbeforeprogressingto morecomplex struc-
tures,andnoexternalmanipulationof thetrainingregimenor
internalmemoryis requiredto inducethisproperty. Thus,the
work calls into questionsupportfor the claim that initially



S 	 NPVI . | NPVT NP .
NP 	 N | N RC
RC 	 who VI | who VT NP| who NPVT
N 	 boy | girl | cat | dog | Mary | John |

boys | girls | cats | dogs
VI 	 walks | bites | eats | barks | sings |

walk | bite | eat | bark | sing
VT 	 chases | feeds | walks | eats | bites |

chase | feed | walk | eat | bite

Table 1: The underlyingcontext-free grammar. Transition
probabilitiesarespecifiedandadditionalconstraintsareap-
pliedon topof this framework.

limited cognitive resourcesor othermaturationalconstraints
arerequiredfor effective languageacquisition.

Simulation Methods
We begin by describingthegrammarsusedin both Elman’s
work and the currentstudy. We then describethe corpora
generatedfromthesegrammars,thearchitectureof thesimple
recurrentnetworks trainedon the corpora,andthe methods
usedin their training.

Grammars

Thelanguagesusedin thiswork aresimilar in basicstructure
to thatusedby Elman(1991),consistingof simplesentences
with thepossibilityof relative-clausemodificationof nouns.
Elman’s grammarinvolved10 nounsand12 verbs,plus the
relative pronounwho andan end-of-sentencemarker. Four
of the nounsweretransitive, four intransitive, andfour op-
tionally transitive. Six of thenounsandsix of theverbswere
singular, theothersplural. Numberagreementwasenforced
betweennounsandverbswhereappropriate.Finally, two of
thenounswereproperandcouldnotbemodified.

This languageis of interestbecauseit forces a predic-
tion network to form representationsof potentiallycomplex
syntacticstructuresand to rememberinformation, such as
whetherthenounwassingularor plural, acrosslong embed-
dings. Elman’s grammar, however, was essentiallypurely
syntactic,involving no form of semantics.Thus,the singu-
lar verbsall actedin the sameway; likewise for the setsof
plural verbsandsingularandplural nouns.Naturallanguage
is clearly far morecomplex andtheadditionof semanticre-
lationshipsoughtto have a profoundeffect on themannerin
whicha languageis processed.

The underlying framework of the grammarusedin this
study, shown in Table1, is nearly identicalto that designed
by Elman.They differ only in thatthecurrentgrammaradds
onepair of mixedtransitivity verbsandthatit allows relative
clausesto modify propernouns.However, severaladditional
constraintsare appliedon top of this framework. Primary
amongthese,asidefrom numberagreement,is that individ-
ual nounscanengageonly in certainactionsandthat transi-

Verb Intransitive Transitive Objects
Subjects Subjects if Transitive

chase - any any
feed - human animal
bite animal animal any
walk any human dog
eat any animal human
bark only dog - -
sing humanor cat - -

Table2: Semanticconstraintson verbusage.Columnsindi-
catelegal subjectnounswhenverbsareusedtransitively or
intransitively andlegalobjectnounswhentransitive.

tive verbscanoperateonly on certainobjects.For example,
anyone can walk intransitively, but only humanscan walk
somethingelseandthe thing walked mustbe a dog. These
constraintsarelistedin Table2.

Anotherrestrictionis thatpropernounscannotactonthem-
selves.For exampleMary chases Mary wouldnotbealegal
sentence.Finally, constructionsof theform Boys who walk
walk aredisallowedbecauseof semanticredundancy. These
andtheaboveconstraintsalwaysapplywithin themainclause
of thesentence.Asidefrom numberagreement,whichaffects
all nounsandverbs,thedegreeto whichtheconstraintsapply
betweena clauseand its subclauseis variable. In this way
thecorrelationbetweena nounandits modifying phrase,or
thelevel of information(abouttheidentityof thenoun)in the
phrase,canbemanipulated.

Thebasicstructureshown in Table1 becomesa stochastic
context-free grammar(SCFG)whenprobabilitiesarespeci-
fied for the variousproductions.Additional structureswere
alsoaddedto allow directcontrolof thepercentageof com-
plex sentencesgeneratedby the grammarand the average
numberof embeddingsin a sentence. Finally, a program
wasdevelopedwhichtakesthegrammar, alongwith theaddi-
tionalsyntacticandsemanticconstraints,andgeneratesanew
SCFGwith theconstraintsincorporatedinto thecontext-free
transitions.In this way, a singleSCFGcanbegeneratedfor
eachversionof thegrammar. This is convenientnot only for
generatingexamplesentencesbut alsobecauseit allowsusto
determinethe optimal predictionbehavior on the language.
Given the SCFGandthe sentencecontext up to the current
point, it is possibleto producethe theoreticallyoptimalpre-
diction of thenext word. This predictionis in the form of a
probabilitydistribution over the26 wordsin thevocabulary.
Theability to generatethisprediction,andhenceto modelthe
grammar, is whatweexpectthenetworksto learn.

Corpora

In orderto studytheeffectof varyinglevelsof informationin
embeddedclauses,fiveclassesof grammarwereconstructed.
In classA, semanticconstraintsdonotapplybetweenaclause
andits subclause,only within aclause.In classB, 25%of the



subclausesrespectthesemanticconstraints,in classC, 50%,
in classD, 75%,andin classE all of thesubclausesarecon-
strained.Therefore,in classA, which is most like Elman’s
grammar, the contentsof a relative clauseprovide no infor-
mationaboutthenounbeingmodifiedotherthanwhetherit is
singularor plural,whereasclassE producessentenceswhich
arethemostEnglish-like.

Elman (1991) first trained his network on a corpus of
10,000sentences,75%of which werecomplex. He reported
thatthenetworkwas“unableto learnthetask”despitevarious
choicesof initial conditionsandlearningparameters.Three
additionalcorporacontaining0%, 25%, and 50% complex
sentenceswerethenconstructed.Whentrainedfor 5 epochs
on eachof thecorporain increasingorderof complexity, the
network “achieved a high level of performance.” As in El-
man’sexperiment,four versionsof eachclasswerecreatedin
thecurrentwork in orderto producelanguagesof increasing
complexity. GrammarsA 
 , A ��� , A � 
 , andA 
 � , for example,
produce0%,25%,50%,and75%complex sentences,respec-
tively. In addition,for eachlevel of complexity, theprobabil-
ity of relative clausemodificationwasadjustedto matchthe
averagesentencelengthin Elman’scorpora.

For eachof the20grammars(fiveclassesof semanticcon-
straintsby four percentagesof complex sentences),two cor-
poraof 10,000sentencesweregenerated,onefor trainingand
theotherfor testing.Corporaof thissizearequiterepresenta-
tiveof thestatisticsof thefull languagefor all but thelongest
sentences,which arerelatively infrequent.Sentenceslonger
than16 wordswerediscardedin generatingthecorpora,but
theseweresorare( ��������� ) that their lossshouldhave neg-
ligible effects. In orderto performwell, a network couldnot
possibly“memorize” the training corpusbut must learn the
structureof thelanguage.

Network Architecture
The architectureof the simple recurrentnetwork usedboth
by Elmanandin the currentwork is illustratedin Figure1.
Thenetwork contained6,936trainableweightsandincluded
a fully connectedprojectionfrom “context” unitswhoseacti-
vationsarecopiedfromhiddenunitsattheprevioustimestep.
The 26 inputswereencodedusingbasisvectors. Oneword
waspresentedoneachtimestep.Althoughthedesiredoutput
of thenetwork is a probabilitydistribution indicatingtheex-
pectednext word, thetargetoutputduringtrainingconsisted
of theactualnext wordoccurringin thesentence.

Thecurrentsimulationswereperformedwith softmaxcon-
straints(Luce, 1986) which normalizethe output vector to
a sumof 1.0, asopposedto the sigmoidaloutputunits used
by Elman.Thedivergenceerrormeasure(Hinton,1989)was
usedin providing feedbackto thenetwork. Theerrorfor each
unit is givenby ��������� �"!#���$�&%(' , where � is thetargetvalue
and % is the outputunit activation. Note that whenthe tar-
get is 0, this value is by convention0 as well. Therefore,
error is only injectedat theunit representingtheactualnext
word in the sentence,which is perhapsmoreplausiblethan
otherfunctionswhichprovide feedbackon everyword in the

Current Word (26)

(10)

Next Word (26)

(70)

(10)

copy

Context (70)

Figure1: Network architecture.Eachsolid arrow representsfull
connectivity betweenlayers(with numbersof unitsin parentheses).
Hiddenunit statesarecopiedto correspondingcontext units(dashed
arrow) aftereachword is processed.

vocabulary. Errors were not backpropagatedthroughtime,
only throughthe currenttime step,andwerethereforealso
relatively local in time. Hiddenlayer activation wasnot re-
setbetweensentences;however, theend-of-sentencemarker
clearlydenotesa sentenceboundary.

Experiments

For eachof thefive languageclasses,two training regimens
werecarriedout. In the complex regimen,the network was
trainedon the mostcomplex corpus(75% complex) for 25
epochswith a fixedlearningrate.Thelearningratewasthen
reducedto 0.0003andthenetwork wastrainedfor onefinal
passthroughthecorpus.In thesimpleregimen,thenetwork
wastrainedfor five epochson eachof thefirst threecorpora
in increasingorderof complexity. It wasthentrainedon the
fourth corpusfor 10 epochs,followedby a final epochat the
reducedlearningrate. The final six epochsof training on
the fourth corpus(not includedin Elman’s design)werein-
tendedto allow performancewith thesimpleregimento reach
asymptote.Thenetworkwasevaluatedonthetestcorpuspro-
ducedby thesamegrammarasthefinal trainingcorpus.

A wide rangeof training parameterswere searchedbe-
fore finding a setwhich consistentlyachieved the bestper-
formanceundernearlyall conditions.Thenetwork usedmo-
mentumdescentwith a momentumof 0.9,a learningrateof
0.004,andinitial weightssampleduniformly between) 1.0.
Softmaxoutput constraintswere appliedwith a divergence
error function. By contrast,the parametersselectedby El-
manincludedno momentum,a learningrateof 0.1annealed
to 0.06,andinitial weightsin the ) 0.001range;also,soft-
max constraintswere not usedand sum-squarederror was
employedduringtraining.

Both complex andsimple trials wererun for eachof the
five grammarclasses.Twentyreplicationsof eachcondition
wereperformed,resultingin 200total trials. Althoughtheac-
tual next word occurringin thesentenceservedasthe target
outputduringtraining,thenetwork wasexpectedto produce
a distribution over all possiblewords. The target vectorsin
thetestingcorporaconsistedof thetheoreticallycorrectpre-
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Figure 2: Final divergenceerror—note that lower valuescorre-
spondto betterperformance.Meansandstandarderror barswere
computedfor thebest16 of 20 trials.

dictiondistributionsgive thegrammarandthesentenceupto
thatpoint. Becausethegrammarsarestochasticandcontext-
free,theseexpectationsarequiteeasyto generate.

Results and Discussion

Figure2 shows the meandivergenceerror per word on the
testingcorpora,averagedover the16 trials yielding thebest
performancein eachcondition. Overall, the complex train-
ing regimenyieldedbetterperformancethanthesimplereg-
imen, F(1,150)=53.8,p � .001. Under no conditiondid the
simpletrainingregimenoutperformthecomplex trainingreg-
imen.Moreover, theadvantagein startingcomplex increased
with the proportion of fully constrainedrelative clauses,
F(4,150)=5.8,p � .001.Thisconformswith theideathatstart-
ing smallis mosteffectivewhenimportantdependenciesspan
uninformative clauses. Nevertheless,againstexpectations,
startingsmall failedto improve performanceevenin classA
whererelativeclausesdonotconformto semanticconstraints
imposedby theprecedingnoun.

It is importantto establish,however, that thenetwork was
ableto masterthe taskto a reasonabledegreeof proficiency
in the complex regimen. Otherwise,it may be the casethat
noneof thenetworksweretruly ableto learn.Averagediver-
genceerrorwas0.074for networkstrainedoncorpusA 
 � and
0.100for networkstrainedon corpusE
 � , comparedwith an
initial errorof 2.6. TheclassE languagesareharderbecause
semanticconstraintsforce thenetwork to make useof more
informationin predictingthecontentsof relative clauses.By
way of anecdotalevidence,the networks appearto perform
nearlyperfectlyon sentenceswith up to onerelative clause
andquitewell onsentencewith two relativeclauses.

Figure3 comparesthe outputof a network trainedexclu-
sively on corpusE
 � with theoptimaloutputsfor thatgram-
mar. The behavior of the network is illustratedfor the sen-

tencesBoy who chases girls who sing walks andDogs
who chase girls who sing walk. Note,in particular, thepre-
diction of the mainverb following sing. Predictionsof this
verbarenot significantlydegradedevenafter two embedded
clauses.Thenetwork is clearlyableto recall the numberof
themainnounandhasa basicgraspof thedifferentactions
allowedon dogsandhumans.It is, however, still unsurethat
boysarenotallowedto biteandthatdogscannotsing. It also
did not quite learntherule thatdogscannotwalk something
else. Otherwise,the predictionsare very closeto optimal,
includingthefactthatcatsandhumanscannotbewalked.

For sentenceswith threeor four clauses,suchasDog who
dogs who boy who dogs bite walks bite chases cat who
Mary feeds, performanceof thenetworkswasconsiderably
worse. To be fair, however, humansaregenerallyunableto
parsesuchsentenceswithout multiple readings.In addition,
fewer than5% of thesentencesin themostcomplex corpora
wereover nine wordslong. This wasnecessaryin orderto
matchthe averagesentence-lengthstatisticsin Elman’s cor-
pora,but it did notprovidethenetwork sufficientexposureto
suchsentencesfor any hopeof learningthem. Interestingly,
the networks were only about4% worseon the testingset
comparedwith the training set, indicatingthat they did not
memorizethetrainingsentencesto a significantextent.

Thebestmeasureof network performancewouldappearto
be a direct comparisonwith the resultspublishedby Elman
(1991).However, thereareproblemswith thisapproach.Be-
causeElmandid notuseastandardform stochasticgrammar,
it wasnotpossibleto producethetheoreticallycorrectpredic-
tionsagainstwhichto ratethemodel.Instead,empiricallyde-
rivedprobabilitiesgiventhesentencecontext werecalculated.
Presumably, theseprobabilitieswerecompiledover replica-
tionsin thetestingsetof theentiresentencecontext upto that
point. Unfortunately, this typeof empiricallybasedlanguage
modeltendsto “memorize” the training corpus,particularly
thelongsentencecontextswhichareoftenunique.

Of thenetworkstrainedexclusivelyoncorpusA 
 � , theone
with medianperformancewasselectedfor evaluationagainst
anempiricallanguagemodeltrainedon our A 
 � testingcor-
pus.Elmanreportedafinal errorof 0.177for hisnetwork (us-
ing,webelieve,Minkowski-1or city-blockdistance).Ourse-
lectednetwork hadanerrorof 0.485againstthemodel,which
would seemto be considerablyworse. However, city-block
distanceis not well-suitedfor probabilitydistributions. Bet-
ter measuresarethemeancosineof theanglebetweentarget
andoutputvectors,andtheir divergence. The selectednet-
work hadanaveragecosineof 0.864,which is slightly better
thanthevalueof 0.852thatElmanreported.

However, comparisonof the empirically derived predic-
tionsagainstthetheoreticallyderivedpredictions,whichrep-
resentthe truedesiredbehavior of thenetwork, indicatethat
theformerareactuallyquitepoor. Whenevaluatedagainstthe
theoreticalpredictions,the empiricalmodelhada meandi-
vergenceof 1.897,adistanceof 0.413,andacosineof 0.881.
In contrast,whencomparedagainstthesamecorrectpredic-
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Figure 4: Strengthof illegal (ungrammatical)predictionsversus
word position. Valuesareaveragedover all 20 networks trainedin
eachcondition.

tions, theselectednetwork hada divergenceof 0.070,a dis-
tanceof 0.158,anda cosineof 0.978.Thus,by all measures,
thenetwork’sperformanceis betterthanthatof theempirical
model. In fact, an empiricalmodeltrainedon 250,000sen-
tencesgeneratedby the A 
 � grammar, including the 10,000
sentencesin theA 
 � testingcorpus,did not evenperformas
well asthenetwork againstthetheoreticalpredictions(diver-
gence0.902,distance0.206,andcosine0.944). Therefore,
suchanempiricalmodelis notagoodbasisfor evaluatingthe
network or for comparingthe network’s behavior to that of
Elman’snetwork.

One possibility is that, althoughnetworks trainedin the
small regimenmight have worseperformanceoverall, they
might nonethelesshave learnedlong-distancedependencies
betterthan networks trainedthe complex regimen. To test
this hypothesis,we computedthe total probability assigned
by the network to predictionsthat could not, in fact, be
the next word in the sentence,as a function of position in
the sentence(seeFigure 4). In general,fewer than 8 of
the 26 wordsare legal at any point in a sentenceproduced
by grammarE
 � . Overall, performancedeclineswith word
position (except for position 16 which can only be end-of-
sentence).However, even17%of the total outputactivation
spreadover 18 illegal wordsis respectable,consideringthat
randomizedweightsproduceabout71% illegal predictions.
Moreimportantly, thecomplex-regimennetworksoutperform
the simple-regimennetworks irrespective of word position,
F(1,15)=25.7,p � .001.

Although “starting small” failed to prove effective in the
main experiments,we attemptedto find conditionsunder
which the simpletraining regimenwould provide anadvan-
tage, in order to explain Elman’s previous findings. First,
we constructedadditionalcorporafor which startingsmall
might be expectedto be beneficial: corporacomposeden-
tirely of complex sentences,anda sixth classof grammars
(A : ) with nodependencies(includingnumberagreement)be-
tweenmain andembeddedclauses.However, the complex
training regimen continuedto yield slightly better perfor-
mancethanthesimpleregimen(meandivergence:0.083vs.
0.085for A � 
�
 ; 0.119vs.0.127for E� 
�
 ; 0.082vs.0.084for
A :
 � , respectively). Anotherpossibilitywasthatthechoiceof
trainingparameterswasresponsiblefor theeffect. Therefore,
networks were trainedwithout momentum,without the use



of softmaxconstraints,and with a sum-squarederror mea-
sure, rather than divergence. Theseparametersare identi-
cal to thosechosenby Elman. Learningratesrangingfrom
1.0to 0.0005crossedwith initial weightrangesfrom ) 1.0to
) 0.0001wereevaluated.Underno conditionsdid networks
trainedwith the simpleregimenperformsignificantlybetter
thannetworks trainedwith the complex regimen. However,
with very small initial weights,a few of the networksusing
thecomplex regimenrequirednearly15epochs(abouta mil-
lion word presentations)to breakthroughan early plateau
in performance. Note, however, that such networks went
on to achievereasonableperformance,althoughno networks
trainedunderElman’s conditionsperformedaswell asthose
trainedwith softmaxanddivergenceerror.

Conclusions
It is apparentthatsimplerecurrentnetworksareableto learn
quitewell whentrainedexclusivelyonalanguagewith only a
smallproportionof simplesentences.Thebenefitof starting
small doesnot appearto be a robust phenomenonfor lan-
guagesof this type and startingsmall often proves to be a
significanthindrance.It is notnecessaryto presentsimplified
inputs to aid the network in learningshort-termdependen-
ciesinitially. Simplerecurrentnetworks learnthis way nat-
urally, first extractingshort-rangecorrelationsand building
up to longer-rangecorrelationsonestepat a time (see,e.g.,
Servan-Schreiber, Cleeremans& McClelland,1991). Start-
ing with simplifiedinputsallowsthenetwork to developinef-
ficient representationswhich mustbe restructuredto handle
new syntacticcomplexity.

An importantaspectsof Elman’s (1993)findingswasthat
a network wasableto learnwhenthe full rangeof datawas
presentedinitially and the network’s memorywas limited.
Although the current work did not addressthis technique
directly, Elman reportedthat networks trainedwith limited
memorydid not learnaseffectivelyasthosetrainedwith sim-
plified input. Given that, in thecurrentwork, we found that
the simple training regimen was inferior to training on the
full complex grammarfrom theoutset,it seemsunlikely that
hinderingthenetwork’smemorywouldbeof any benefit.

It shouldbe acknowledged,however, that therearesitua-
tions in which startingwith simplified inputsmaybeneces-
sary. So-called“latching” tasks(Bengio,Simard& Frasconi,
1994;Lin, Horne& Giles,1996)requirenetworksto remem-
ber informationfor extendedperiodswith no correlatedin-
puts. Bengioandcolleagueshave arguedthat recurrentnet-
workswill havedifficulty solvingsuchproblemsbecausethe
propagatederror signalsdecayexponentially. This is taken
astheoreticalevidencethat an incrementallearningstrategy
is morelikely to converge(Giles& Omlin, 1995).However,
suchsituations,in whichdependenciesspanlong,uninforma-
tive regions,arenotatall representativeof naturallanguage.

Importantcontingenciesin languageandothernaturaltime
seriesproblemstendto spanregionsof inputwhicharethem-
selvescorrelatedwith thecontingentpair. In thesecases,re-
currentnetworks are able to leveragethe weakshort-range

correlationsto learn the stronger long-rangecorrelations.
Only in unnaturalsituationsis it necessaryto spoon-feeda
network simplified input, and doing so may be harmful in
mostcircumstances.Theability of suchasimplifiednetwork
modelto learna relatively complex predictiontaskleadsone
to concludethat it is quite plausiblefor a humaninfant to
learnthestructureof languagedespitea lack of negative ev-
idence,despiteexperiencingunsimplifiedgrammaticalstruc-
tures,anddespitedetailed,innateknowledgeof language.
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