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Abstract

It is commonlyassumedthat innate linguistic constraintsare

necessaryto learnanaturallanguage,basedontheapparentlack

of explicit negativeevidenceprovidedto childrenandonGold’s

proof that,underassumptionsof virtually arbitrarypositivepre-

sentation,most interestingclassesof languagesare not learn-

able.However, Gold’sresultsdonotapplyundertherathercom-

monassumptionthat languagepresentationmaybemodeledas

a stochasticprocess.Indeed,Elman(1993,Cognition) demon-

stratedthatasimplerecurrentconnectionistnetwork couldlearn

anartificial grammarwith someof thecomplexities of English,

including embeddedclauses,basedon performinga word pre-

diction taskwithin a stochasticenvironment.However, thenet-

work wassuccessfulonly wheneitherembeddedsentenceswere

initially withheld andonly later introducedgradually, or when

thenetwork itselfwasgiveninitially limitedmemorywhichonly

graduallyimproved. This finding hasbeentakenassupportfor

Newport’s “less is more” proposal,that child languageacqui-

sition may be aidedratherthan hinderedby limited cognitive

resources.The currentarticle reportson connectionistsimula-

tions which indicate,to the contrary, that startingwith simpli-

fied inputsor limited memoryis notnecessaryin trainingrecur-

rent networks to learnpseudo-naturallanguages;in fact, such

restrictionshinderacquisitionasthe languagesaremademore

English-like by the introductionof semanticaswell assyntac-

tic constraints. We suggestthat, undera statisticalmodel of

thelanguageenvironment,Gold’s theoremandthepossiblelack

of explicit negative evidencedo not implicateinnate,linguistic-

specificmechanisms.Furthermore,oursimulationsindicatethat

specialteachingmethodsor maturationalconstraintsmaybeun-

necessaryin learningthestructureof naturallanguage.

1 Introduction

Traditionally, the problem of languageacquisitionhas

beentreatedasa problemof learningto identify andpro-

ducethe valid sentencesin one’s language. The ideal-

ized speaker is presumedto possessa set of rules, or

competencegrammar, capableof generatingall well-

formed sentencesor determiningwhetherany sentence

is valid or invalid. The learningprocessis driven both

by the learner’s innateendowmentof structuredlinguis-

tic knowledgeandby the learner’s exposureto language.

Fundamentalquestionsthusconcernthe natureof these

sourcesof information,how they areutilized,andtheex-

tent to which eachis responsiblefor the eventualattain-

mentof languageskill.

Thestandardapproachin linguisticshastendedto view

theinputto thechild learnersimplyasasequenceof valid

sentences.Statisticalpropertiesof this inputaregenerally

overlookedor thoughtto bearlittle relevanceto learning.

Indeed,someconsiderthisa featureof theapproachasat-

tentionto statisticspotentiallyplacesa tremendouscom-

putationalburdenonthelearner(seeAllen & Seidenberg,

1999,for discussion).Additionally, Baker (1979),among

others,hasarguedthatchildrenreceivenegligible explicit

negativefeedbackfollowing productionerrors.1

1Wewill usethetermexplicit negative evidenceto referto feedback
givento thechild in responseto thechild’s utterances.Onecanfurther
distinguishbetweenovertexplicit negativeevidence,suchasdirectstate-
mentsthata particularsentenceis ungrammatical,andsubtleor covert
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Onevirtue of a simplemodelof thelanguageenviron-

mentis thatit facilitatestheinvestigationof formalproofs

of the learnabilityor unlearnabilityof certainproblems.

In particular, thetheoreticalfindingsof Gold (1967)have

led to the widely acceptedhypothesisthat the burdenof

languagelearninglies primarily on our geneticendow-

mentandonly secondarilyon actuallanguageexposure.

In short,Gold proved,undercertainassumptions,thatno

superfiniteclassof languagesis learnableby any learner

withoutnegativeexamples.Amongthesuperfiniteclasses

of languagesis thesetof regularlanguages,recognizable

by finite-statemachines,aswell astheclassesof context-

free andcontext-sensitive languages,which arebelieved

to be morecloselyrelatedto naturallanguages.A criti-

cal assumptionin Gold’smodelis thatthelanguageinput

consistsof a nearlyarbitrarysequenceof positive exam-

ples,subjectonly to the constraintthat no sentencemay

bewithheldfrom thelearnerindefinitely.

Goldrecognizedtheproblemhisfindingsposedfor nat-

ural languageacquisitionandofferedthreesolutions.The

first is that the child may make use of somesubtleor

covert negative evidencein the parentalresponsesto the

child’sutterances.Researcherswhoemphasizetheroleof

environmentalinput in languageacquisitionhave princi-

pally focusedon this issue,arguing that subtlefeedback

is availableto the child andis correlatedwith improved

long-termlearning(seeSokolov & Snow, 1994, for re-

view). Although the extent to which parentsdo indeed

provide eitherovert or covert explicit feedbackis a mat-

terof ongoingdebate,it seemsunlikely thatthis feedback

wouldbesufficiently robustto overcomeGold’sproblem.

Thesecondsolutionproposedby Gold is thattheclass

of possiblenaturallanguagesis smallerthanexpectedand

thatthechild hassomeinnateknowledgeidentifying this

class.This is thesolutionthathasbeenmostreadilyac-

explicit evidence,suchasa greatertendency for parentsto rephraseun-
grammaticalcomparedwith grammaticalutterances.In contrast,wewill
useimplicit negative evidenceto referto distributionalpropertiesof the
input which do not dependon the languageproductionof the learner.
Implicit negative evidenceis sometimesreferredto asindirect, although
we favor theformerterm.

ceptedin thelinguisticscommunityandis associatedwith

the theoriesof UniversalGrammarand the innateLan-

guageAcquisitionDevice. Giventheapparentlackof ex-

plicit negative evidenceprovided to children, strongin-

natelinguistic constraintsareregardedby many authors

(e.g., Berwick, 1985; Marcus,1993; Morgan& Travis,

1989; Morgan, Bonamo,& Travis, 1995) to be an in-

escapablesolution to the learnability problem. On the

surface,it seemsperfectlyreasonableto hypothesizethat

thesetof naturallanguagesis limited: It is unlikely that

everyregularor every context-freelanguageis a possible

naturallanguage.However, evenunderthis assumption,

mostinterestingsubsetsof theselanguageclasseswould

still beunlearnableunderGold’s model. It remainsto be

seenwhatdegreeof constraints,if any, would enablethe

learningof naturallanguagein Gold’s framework.

However, Gold madebrief mentionof a third possibil-

ity: that his assumptionregardingthe possibletexts (or

sequencesof positive examples)for a languagewas too

generalandthat“thereis anapriori restrictionontheclass

of texts which canoccur” (p. 454). In Gold’s model,a

fair text is aseriesof positiveexamplesfrom thelanguage

in which every legal sentencewill eventuallyoccur. Su-

perfinitelanguageswerefound to be unlearnableonly if

texts arearbitraryor areproducedby the powerful class

of recursivefunctions.Suchafunctioncanprohibit learn-

ing by producinga seriesof examplesdesignedspecif-

ically to confusethe learnerindefinitely. However, this

hardlyseemsanappropriatemodelfor a child’s linguistic

environment—whilethereis ongoingdebateon the ex-

tent to which child-directedspeechis simplified relative

to adult-directedspeech(see,e.g.,Gallaway & Richards,

1994;Snow & Ferguson,1977)noonewouldproposethat

it is tailoredspecificallyto hinder languageacquisition.

An alternativeis to constrainthepossibletextsby mod-

elinglanguageasastochasticprocess—somesentencesor

grammaticalconstructionsaremorefrequentthanothers

andlanguageis generatedby arelatively stationarydistri-

bution over thesestrings(seeSeidenberg, 1997;Seiden-

2
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berg & MacDonald,in press).Thestatisticalstructureof

astochasticallygeneratedtext providesanimplicit source

of negativeevidence.Essentially, if aparticulargrammat-

ical constructionis not observed during someextended

but finite exposure,onecan safelyassumethat it is not

partof thelanguage.2 With moreexposure,theprobability

of makinganerrordecreases.Note,though,thatderiving

evidencefromnon-occurrencewithin afinite sampleis in-

valid withoutamorelimited sourcethanGold’s text. The

difficulty in learningfrom anarbitrarytext deriveslargely

from thepossibilitythataconstructionthatis importantto

the languagehasbeenwithheld from all prior sentences.

However, givena stochastictext, a constructionthatdoes

notappearfor averylongtimehasaverysmallchanceof

beingan importantpart of the languageandcanthusbe

ignoredat little cost.

While a stochasticmodelof text generationis perhaps

still overly weak,as it neglectsthe influenceof context

on sentenceselection,it is nonethelesssufficient to allow

learnability. Indeed,Horning(1969)andAngluin (1988)

have proved, underslightly differentcriteria for conver-

gence,that stochasticcontext-free languagesare learn-

able from only positive examples. Angluin notesthat

there is an importantsimilarity betweenthis result and

Gold’s positive finding that even recursively enumerable

languagesarelearnablefrom textsgeneratedby primitive

recursive functions,as opposedto fully recursive func-

tions. If we acceptthat a stochastictext is a morerea-

sonableapproximationto achild’slinguistic inputthanan

arbitrary text, Gold’s findingsno longerposea “logical

problem”(Baker & McCarthy, 1981)for languageacqui-

sition.

It is importantto note,though,thatastochasticview of

2Theterm“construction”hererefersto grammaticaldistinctions,ab-
stractionsor rulesratherthanto specificsentences.Thus,for example,
Chomsky’s (1957)famoussentence,“Colorlessgreenideassleepfuri-
ously”, is supportedby the input as one of many simple active SVO
sentences.Althoughconnectionistnetworks might not instantiatesuch
constructionsasexplicit, distinctdatastructures,thesesystemsnonethe-
lesshavethecapabilityof developinginternaldistributedrepresentations
thatsupporteffective generalizationacrosssentenceswith similargram-
maticalstructure(in theclassicsense).

languageleadsto a ratherdifferentdefinition of what it

meansto learna language.On thetraditionalview, learn-

ing a languageinvolvesconvergingon thesingle,correct

grammarof the language;any deviation from this gram-

mar in theactualbehavior of languageusersmustbeas-

cribedto performancefactors. Moreover, given that all

learnersof a languagemustacquirecompetencein equiv-

alentgrammars,it iscritical tohaveformalguaranteesthat

this will happen.From a stochasticperspective, by con-

trast, the grammarsacquiredby membersof a language

communityneednotbeidenticalbutonlysufficientlysim-

ilar to permit effective communication. The degreeof

agreementamong individuals in, for example, making

grammaticalityjudgmentswould thusbe expectedto be

very high but not perfect. It is still possibleto formulate

explicit boundsonlearnability, but theseboundsareprob-

abilistic ratherthanabsolute.Moreover, on this view, the

studyof actuallanguageperformanceplaysamorecentral

role thanon traditionalviews becausesuchperformance

is taken to reflectunderlyinglanguageknowledgemore

directly.

This leadsto a seriouspracticalproblem. The human

brain is considerablyrestrictedasa learningdevice due

to its limited memoryandanalyticalabilities.Theprinci-

pal mechanismsof languageacquisitionseemto operate

onlinewith relatively little storageandsubsequentanaly-

sis of the actualinputs. In contrast,the learningmecha-

nismsproposedby Horning,Angluin, andothersrely on

repeatedevaluationandre-evaluationof vastsetsof com-

plete,candidategrammars.They arethusunlikely to lead

to reasonablecomputationalmodelsof our languageac-

quisitionmechanism.

Givenrestrictionsof limited memoryandonlinelearn-

ingwith iterativeupdatesof asmallsetof candidategram-

mars,oneway the statisticalstructureof a languagecan

beapproximatedis throughtheformulationandtestingof

implicit predictions. By comparingone’s predictionsto

whatactuallyoccurs,feedbackis immediateandnegative

evidencederivesfrom incorrectpredictions.Althoughnot

3
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emphasizingonlineprediction,Chomsky (1981)followed

Gold (1967) in pointing out the potentialimportanceto

languageacquisitionof “expectations”:

A not unreasonableacquisitionsystemcan be de-
visedwith theoperativeprinciplethatif certainstruc-
turesor rulesfail to beexemplifiedin relatively sim-
ple expressions,where they wouldbeexpectedto be
found, thena(possiblymarked)optionis selectedex-
cludingthemin thegrammar, sothatakind of “neg-
ativeevidence”canbeavailableevenwithoutcorrec-
tions,adversereactions,etc. (p. 9; emphasisadded)

Theability to predictutterancesin a languageis surpris-

ingly powerful. Accuratepredictionis equivalentto pos-

sessinga grammarable to producea languageor to de-

cidethegrammaticalityof any sentence.Predictionmust

be basedon a language model, which has beenfound

to be essentialin many forms of automatednaturallan-

guageprocessing,such as speechrecognition (Huang,

Ariki, & Jack,1990). More generally, in learningcom-

plex, goal-directedbehavior, predictioncan provide the

feedbacknecessaryto learnaninternalforward modelof

how actionsrelateto outcomes(Jordan,1992; Jordan&

Rumelhart,1992). Sucha model can be usedto con-

vert “distal” discrepanciesbetweenobservableoutcomes

andgoalsinto the “proximal” errorsignalsnecessaryfor

learning,therebyobviating the needfor externally pro-

vided error signals. An importantadditionalfeatureof

predictionis that feedbackis availableimmediately;the

learnerneednot performa re-analysisof previously ob-

served positive evidence(cf. Marcus,1993). Again, it

shouldbe emphasizedthat theoreticalproposalsinvolv-

ing expectationor predictionareprecludedunderGold’s

modelbecausepastexperiencewith the languageis not

necessarilyrepresentativeof futureexperience.

It remains,then, to be demonstratedthat a compu-

tational systemcan acquirea languageunderstochastic

text presentationwithout relying on inappropriatemem-

ory or timerequirements.Towardsthisend,Elman(1991,

1993)providedan explicit formulationof how a general

connectionistsystemmight learnthe grammaticalstruc-

ture of a languageon the basisof performinga predic-

tion task. He traineda simplerecurrentnetwork (Elman,

1990;sometimestermedan“Elman” network) to predict

thenext wordin sentencesgeneratedby anartificial gram-

marexhibitingnumberagreement,variableverbargument

structure,andembeddedclauses.Althoughword predic-

tion is a far cry from languagecomprehension,it canbe

viewedasa usefulcomponentof languageprocessingto

theextentthatlearningagrammaris useful,giventhatthe

network canmake accuratepredictionsonly by learning

the structureof the grammar. Elmanfound that the net-

work wasunableto learnthepredictiontask—and,hence,

the underlyinggrammar—whenpresentedfrom the out-

set with sentencesgeneratedby the full grammar. The

network was, however, able to learn if it was trained

first on only simple sentences(i.e., thosewithout em-

beddings)followed by an increasingproportionof com-

plex sentences,or if thenetwork’s memoryspanwasini-

tially reducedandgraduallyallowedto improve.Thefact

that learningwassuccessfulonly underconditionsof re-

strictedinput or restrictedmemoryis whatElman(1993)

referredto as“the importanceof startingsmall.”

Elman’s finding that simplifying a network’s training

environmentor limiting its computationalresourceswas

necessaryfor effective languagelearning accordswell

with Newport’s “less is more” proposal(Newport, 1990;

Goldowsky & Newport, 1993)—thatthe ability to learn

a languagedeclinesover time asa resultof an increase

in cognitive abilities. This hypothesisis basedon evi-

dencethat early and late learnersseemto show qualita-

tive differencesin the typesof errorsthey make. It has

beensuggestedthat limited abilities may force children

to focusonsmallerlinguisticunitswhich form thefunda-

mentalcomponentsof language,ratherthanmemorizing

largerunitswhicharelessamenableto recombination.In

termsof Elman’s network, it is possiblethatstagedinput

or limited memorysimilarly causedthenetwork to focus

earlyon simpleandimportantfeatures,suchasthe rela-

tionshipbetweennounsandverbs. By “starting small,”

thenetwork hada betterfoundationfor learningthemore

4
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difficult grammaticalrelationshipswhichspanpotentially

longanduninformativeembeddings.

We setout in the currentwork to investigatewhether

the needfor startingsmall in learninga pseudo-natural

languagemight be lesscritical if the languageincorpo-

rated more of the constraintsof natural languages. A

salientfeatureof the grammarusedby Elman is that it

is purely syntactic,in the sensethat all wordsof a par-

ticular class,suchas the singularnouns,were identical

in usage. A consequenceof this is that embeddedma-

terial modifying a headnounprovidesrelatively little in-

formationaboutthesubsequentcorrespondingverb. Ear-

lier work by Cleeremans,Servan-Schreiber, andMcClel-

land (1989),however, had demonstratedthat simple re-

currentnetworks werebetterable to learn long-distance

dependenciesin finite-stategrammarswhen intervening

sequenceswere partially informative of (i.e., correlated

with) thedistantprediction.Theintuitionbehindthisfind-

ing is thatthenetwork’sability to representandmaintain

information aboutan importantword, suchas the head

noun,is reinforcedby theadvantagethis informationpro-

videsin predictinginformationwithin embeddedphrases.

As a result,thenouncanmoreeffectively aid in thepre-

diction of thecorrespondingverbfollowing theinterven-

ing material.

Onesourceof suchcorrelationsin naturallanguageare

distributional biases,due to semanticfactors,on which

nounstypically co-occurwith which verbs.For example,

supposedogsoftenchasecats. Over thecourseof train-

ing, thenetwork hasencounteredchased moreoftenaf-

ter processingsentencesbeginningThe dog who... than

after sentencesbeginning with othernounphrases.The

network can,therefore,reducepredictionerrorwithin the

embeddedclauseby retainingspecificinformationabout

dog (beyond it beinga singularnoun). As a result, in-

formation on dog becomesavailable to supportfurther

predictionsin thesentenceasit continues(e.g.,The dog

who chased the cat barked).

Theseconsiderationsled us to believe that languages

similar to Elman’s but involving weak semanticcon-

straintsmight result in lessof an advantagefor starting

smallin child languageacquisition.Webeganby examin-

ing theeffectsof an incrementaltrainingcorpus,without

manipulatingthe network’s memory. In the first simu-

lation studyreportedhere,we found, somewhat surpris-

ingly, that the additionof semanticconstraintsnot only

resultedin lessof anadvantagefor startingsmallbut in a

significantadvantagefor startingwith thefull complexity

of the language.Moreover, and in accordancewith the

resultsof Cleeremansandcolleagues,the advantagefor

“startinglarge” increasedasthelanguagewasmademore

English-likeby strengtheningthesemanticconstraints.

In orderto betterunderstandthe discrepancy between

our resultsandthoseof Elman(1991,1993),in a second

studywe attempteda moredirect replicationof Elman’s

grammarandmethods.Usinga similar grammarbut our

own trainingmethods,weagainfounda disadvantagefor

startingsmall. With parameterssimilar to thoseusedby

Elman,however, thenetwork failedto learnthetaskwell

in either condition. Altering thesemethodsby increas-

ing the rangeof the initial connectionweightsresulted

in much-improvedperformancebut a clearadvantagefor

startingwith the full grammar. In fact,we foundno ad-

vantagefor startingwith asimplifiedtrainingcorpuseven

when the target languagecontainsno simple sentences.

Only in extremeconditionsinvolving nosimplesentences

andembeddedclauseswhichareunrelatedto thewordbe-

ing modifieddid we find anadvantagefor startingsmall.

It thusappearsthat thebenefitof startingwith simplified

inputsis notarobustresultfor theacquisitionof suchlan-

guagesby simplerecurrentnetworks.

Thereremainedthe possibility that an advantagefor

startingsmall would hold for networks with initially re-

strictedmemory, which is theconditionElman(1993)in-

terpretedas a more appropriateapproximationto child

languageacquisition. To test this possibility, we carried

out a third simulationstudyinvolving the samememory

manipulationasElman,usingtwo differentgrammarsand

5
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several combinationsof training parameters.Under no

circumstancesdidwefind asignificantdifferencebetween

theresultswith full memoryandtheresultswith initially

limited memory. Therefore,althoughearly memoryim-

pairmentsdo not significantlyhinder languagelearning,

they do not seemto provideany advantagein our experi-

ments.

Basedon theresultsof thesesimulationstudies,wear-

guethat, in learningthe structureof pseudo-naturallan-

guagesthroughprediction,it is an inherentpropertyof

simplerecurrentnetworksthatthey extractsimple,short-

rangeregularities before progressingto more complex

structures.No manipulationof thetrainingcorpusor net-

work memoryis necessaryto inducethis bias. Thus,the

currentwork calls into questionwhethereffective child

languageacquisitiondependson, or even benefitsfrom,

initially limited cognitive resourcesor othermaturational

constraints.In the GeneralDiscussionwe addressopen

issuesin earlyversuslateexposureto languageandques-

tion the necessityof eitherexplicit negative evidenceor

innatelinguisticconstraintsin languageacquisitionunder

a modelof languagethatpromotestheimportanceof sta-

tistical information.

2 Simulation 1: Progressive inputs

Elman(1991)was interestedin demonstratinghow, and

indeedif, a recurrentnetwork could representcomplex

structuralrelationsin its input. A task was chosenin

which sentenceswerepresentedoneword at a time, and

thenetwork wastrainedto predicteachsuccessive word.

Theability of thenetwork to performwell is indicativeof

its ability to representandusethe structuralrelationsin

thegrammar.

A notablelimitation of Elman’s grammarwas that it

waspurely syntactic. The goal of our initial simulation

wasto extendElman’s work to apply to a morenatural-

istic language.In particular, we setout to study the ef-

fect of makingthegrammarmorenaturalthroughthead-

dition of semanticconstraints(i.e., restrictionson noun-

verb relationships). Given the findings of Cleeremans

et al. (1989)—thatevensubtleinformationin anembed-

dingcanaidthelearningof long-distancedependencies—

wehypothesizedthattheadditionof semanticconstraints

might reducetheadvantagefor startingsmall.

2.1 Method

Themethodsusedin thesimulationareorganizedbelow

in termsof thegrammarusedto generatetheartificial lan-

guage,thenetwork architecture,thetrainingcorporagen-

eratedfrom thegrammar, theproceduresusedfor training

thenetwork, andtheway in whichtheperformanceof the

network was tested. In general,thesemethodsarevery

similar to thoseusedby Elman(1991,1993);differences

arenotedexplicitly throughout.

2.1.1 Grammar

Thepseudo-naturallanguageusedin the currentsimula-

tion wasbasedon the grammarshown in Table1. The

grammargeneratessimplenoun-verbandnoun-verb-noun

sentenceswith thepossibilityof relative clausemodifica-

tion of nouns. The grammarinvolved 10 nounsand14

verbs,aswell as the relative pronounwho and an end-

of-sentencemarker (heredenoted“.”). Four of theverbs

weretransitive, four wereintransitive, andfive wereop-

tionally transitive.Six of thenounsandsevenof theverbs

weresingular, the othersplural. Finally, numberagree-

ment was enforcedbetweensubjectsand verbs, where

appropriate.Relative clausescouldbenested,producing

sentencessuchas:

girls who cat who lives chases walk dog who
feeds girl who cats walk .

Althoughthis languageis highly simplified from natural

language,it is nonethelessof interestbecause,in orderto

learnto make accuratepredictions,a network mustform

representationsof potentiallycomplex syntacticstructures

andrememberinformation,suchas whetherthe subject

was singularor plural, over lengthy embeddings. The

6
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Table1: TheContext-FreeGrammarUsedin Simula-
tion 1

S � NPVI . | NPVT NP .
NP � N | N RC
RC � who VI | who VT NP| who NPVT
N � boy | girl | cat | dog | Mary | John |

boys | girls | cats | dogs
VI � barks | sings | walks | bites | eats |

bark | sing | walk | bite | eat
VT � chases | feeds | walks | bites | eats |

chase | feed | walk | bite | eat

Note: Transitionprobabilitiesare specifiedand additional
constraintsareappliedon topof this framework.

Table2: SemanticConstraintsonVerbUsage
Intransitive Transitive Objects

Verb Subjects Subjects if Transitive
chase – any any
feed – human animal
bite animal animal any
walk any human only dog
eat any animal human
bark only dog – –
sing humanor cat – –
Note: Columns indicate legal subjectnouns when verbs
areusedintransitively or transitively andlegal objectnouns
whentransitive.

grammarusedby Elmanwasnearlyidenticalto thecur-

rent one, except that it had one fewer mixed transitiv-

ity verb in singularandplural form, andthe two proper

nouns,Mary andJohn, couldnotbemodified.

In thecurrentwork, severaladditionalconstraintswere

appliedon topof thegrammarin Table1. Primaryamong

thesewasthatindividualnounscouldengageonly in cer-

tain actions,and that transitive verbscould act only on

certainobjects.For example,anyonecouldwalk,but only

humanscouldwalk somethingelseandthe thing walked

must be a dog. The full set of constraintsare listed in

Table2.

Another restriction in the languagewas that proper

nounscould not act on themselves. For example,Mary

chases Mary wouldnotbealegalsentence.Finally, con-

structionswhichrepeatanintransitiveverb,suchasBoys

who walk walk, weredisallowedbecauseof redundancy.

Theseandtheabove constraintswill bereferredto asse-

manticconstraints.In thesimulation,semanticconstraints

alwaysappliedwithin themainclauseof thesentenceas

well aswithin any subclauses.Although numberagree-

mentaffectedall nounsandverbs,thedegreeto whichthe

semanticconstraintsappliedbetweenanounandits mod-

ifying phrasewascontrolledby specifyingtheprobability

thattherelevantconstraintswouldbeenforcedfor agiven

phrase.In this way, effectsof the correlationbetweena

nounandits modifyingphrase,or of thelevel of informa-

tion the phrasecontainedaboutthe identity of the noun,

couldbeinvestigated.

Two otherparameterswereusedto controlthebehavior

of thegrammar. First, theframework depictedin Table1

wasmodifiedto allow thedirectspecificationof theper-

centageof simpleandcomplex sentencesproduced.Sec-

ond,theprobabilityof nounphrasemodificationwasad-

justedto control the averagelength of sentencesin the

language.

Whenprobabilitiesarespecifiedfor theproductionsin

the grammar, it becomesa stochasticcontext-freegram-

mar (SCFG).A grammarof this form is convenientnot

only for generatingexamplesentences,but alsobecause

it allows us to calculatethe optimal prediction behav-

ior on the language.Given the stochasticnatureof the

language,the network cannotin generalpredict the ac-

tual next word in a sentenceaccurately. Rather, over the

courseof training,we expectthenetwork to increasingly

approximatethetheoreticallycorrectpredictiongiventhe

sentencecontext up to thecurrentpoint, in the form of a

probability distribution over the 26 words in the vocab-

ulary. One advantageof expressingthe languageas an

SCFGis thatthisprobabilitydistributioncanbecomputed

exactly. However, the above mentionednumberagree-

mentandsemanticconstraintsaredifficult to incorporate

into the basicgrammarshown in Table1. Therefore,a

programwas developed(Rohde,1999) which takes the

grammar, alongwith the additionalconstraints,andpro-

ducesa new, muchlargerSCFGwith the constraintsin-

7
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OUTPUT26

HIDDEN70

INPUT26

10
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copy

Figure1: Thearchitectureof thenetwork usedin thesim-
ulations.Eachsolidarrow representsfull connectivity be-
tweenlayers(with numbersof units next to eachlayer).
Hidden unit statesare copied to correspondingcontext
units(dashedarrow) aftereachword is processed.

corporatedinto thestochastic,context-freetransitions.In

this way, a singleSCFGcouldbeproducedfor eachver-

sionof thegrammarandthenusedto generatesentences

or to specifyoptimalpredictions.

2.1.2 Networkarchitecture

Thesimplerecurrentnetwork usedin bothElman’ssimu-

lationsandin thecurrentwork is shown in Figure1. In-

putswererepresentedaslocalistpatternsor basisvectors:

Eachword wasrepresentedby a singleunit with activity

1.0,all otherunitshaving activity 0.0.Thisrepresentation

waschosento deprivethenetwork of any similarity struc-

tureamongthewordsthatmightprovide indirectcluesto

their grammaticalproperties.Thesame1-of-n represen-

tationwasalsousedfor outputs,whichhastheconvenient

propertythattherelativeactivationsof multiplewordscan

be representedindependently. Although Elmanreserved

two of the input andoutputunits for anotherpurpose,all

26 units wereusedin Simulation1. The two small 10-

unit hiddenlayerswereprovidedto allow thenetwork to

re-representlocalist inputsin a distributedfashionandto

performa moreflexible mappingfrom the main hidden

layerto theoutput.Theselayershave theadditionalben-

efit of reducingthe total numberof connectionsin the

model; A direct projectionfrom 26 units to 70 units re-

quires1820connections,whereasthesameprojectionvia

10 intermediateunitsrequiresonly 970connections.

On eachtime step,a new word waspresentedby fix-

ing the activationsof the input layer. Theactivity in the

mainhiddenlayerfrom theprevioustimestepwascopied

to the context layer. Activation thenpropagatedthrough

the network, as in a feed-forwardmodel,suchthat each

unit’s activationwasa smooth,nonlinear(logistic) func-

tion of its summedweightedinput from otherunits. The

resultingactivationsover theoutputunitswerethencom-

paredwith their targetactivations. In a simplerecurrent

network, errorsarenotback-propagatedthroughtime(cf.

Rumelhart,Hinton, & Williams, 1986)but only through

the currenttime step,althoughthis includesthe connec-

tions from the context units to the hiddenunits. These

connectionsallow informationaboutpastinputs—asen-

codedin the previous hiddenrepresentationcopiedonto

thecontext units—toinfluencecurrentperformance.Al-

thoughthe target outputsusedduring training were the

encodingfor theactualnext word, typically a numberof

wordswerepossibleat any given point in the sentence.

Therefore,to perform optimally the network must gen-

erate,or predict,a probabilitydistribution over theword

unitsindicatingthelikelihoodthateachwordwouldoccur

next. Averagedacrosstheentirecorpus,this distribution

will result in the lowestperformanceerror on mostany

measure,including squarederror and Kullback-Leibler

divergence(seeRumelhart,Durbin, Golden,& Chauvin,

1995). Table 3 containsthe formulaeusedto calculate

theseandthe othererror measuresdiscussedin the cur-

rentwork.

Sentencesin the corporawere concatenatedtogether

andcontext unitswerenotreinitializedatsentencebound-

aries. Note, however, that it is trivial for the network to

learnto besensitive to thestartof a sentence,astheend-

of-sentencemarker is aperfectlyreliableindicatorof sen-

tencebreaks.

2.1.3 Corpora

Initially, Elmanproduceda corpusof 10,000sentences,

75% of which were“complex” in that they containedat

8
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Table3: ErrorMeasuresUsedin TestingtheNetwork
ErrorMeasure Formula

City-Block
����� � ���
	�� �

SquaredError
� �
��� � ��	 ���
�

Cosine
����� � 	 � ������� �� ��� 	 �� �����
���

Divergence
����� ����� � �!� �#"�	�� �

Note: $&% is theactivationof the ' th outputunit onthecurrent
wordand (�% is its targetor desiredactivation.

leastonerelativeclause.Despiteexperimentingwith var-

ious architectures,startingconditions,and learningpa-

rameters,Elman (1991) reportedthat “the network was

unableto learnthetaskwhengiventhefull rangeof com-

plex datafrom the beginning” (p. 100). In responseto

this failure,Elmandesignedastagedlearningregimen,in

which thenetwork wasfirst trainedexclusively onsimple

sentencesand thenon an increasingproportionof com-

plex sentences. Inputs were arrangedin four corpora,

eachconsistingof 10,000sentences.Thefirst corpuswas

entirelysimple,thesecond25% complex, the third 50%

complex, andthefinal corpuswas75%complex—aswas

theinitial corpusthatthenetwork hadfailedto learnwhen

it alonewaspresentedduringtraining.An additional75%

complex corpus,generatedin the sameway as the last

trainingcorpus,wasusedfor testingthenetwork.

In orderto studythe effect of varying levels of infor-

mation in embeddedclauses,we constructedfive gram-

marclasses.In classA, semanticconstraintsdid not ap-

ply betweenthe clauseand its subclause,only within a

clause. In classB, 25% of the subclausesrespectedthe

semanticconstraints,50%in classC, 75%in classD, and

100%in classE. Therefore,in classA, which wasmost

like Elman’s grammar, the contentsof a relative clause

provided no informationaboutthe nounbeingmodified

otherthanwhetherit wassingularor plural,whereasclass

E producedsentenceswhich werethemostEnglish-like.

We shouldemphasizethat, in this simulation,semantic

constraintsalwaysappliedwithin a clause,including the

mainclause.This is becausewe wereinterestedprimar-

ily in the ability of the network to performthe difficult

mainverbprediction,whichreliednotonly onthenumber

of the subject,but on its semanticpropertiesaswell. In

thesecondsimulation,wewill investigateacasein which

all thesemanticconstraintswereeliminatedto producea

grammaressentiallyidenticalto Elman’s.

As in Elman’s work, four versionsof eachclasswere

createdto producelanguagesof increasingcomplexity.

GrammarsA ) , A ��* , A * ) , andA + * , for example,produce

0%,25%,50%,and75%complex sentences,respectively.

In addition,for eachlevel of complexity, the probability

of relative clausemodificationwasadjustedto matchthe

averagesentencelengthin Elman’s corpora,with theex-

ceptionthat the25%and50%complex corporainvolved

slightly longersentencesto providea moreevenprogres-

sion, reducingthe largedifferencebetweenthe50%and

75% complex conditionsapparentin Elman’s corpora.

Specifically, grammarswith complexity 0%, 25%, 50%,

and75%had0%, 10%,20%,and30%modification,re-

spectively. The averagesentencelengthsfor eachof the

trainingcorporausedin thecurrentsimulation,aswell as

Elman’s,aregivenin Table4.

For eachof the 20 grammars(five levels of semantic

constraintscrossedwith four percentagesof complex sen-

tences),two corporaof 10,000sentencesweregenerated,

onefor trainingandtheotherfor testing.Corporaof this

sizearequiterepresentativeof thestatisticsof thefull lan-

guagefor all but the longestsentences,which are rela-

9
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Table4: AverageLengthof SentencesGeneratedby GrammarClasses
GrammarClass

% Complex A B C D E R, Elman
0% 3.50 3.50 3.50 3.50 3.50 3.46 3.46
25% 4.20 4.19 4.20 4.19 4.18 3.94 3.92
50% 5.04 5.07 5.07 5.06 5.06 4.39 4.38
75% 6.05 6.04 6.04 6.06 6.06 6.02 6.02-

Usedin Simulation2.

tively infrequent. Sentenceslonger than16 wordswere

discardedin generatingthe corpora,but thesewere so

rare( .0/2143 5 ) that their lossshouldhave hadnegligible

effects.In orderto performwell, thenetwork cannotpos-

sibly “memorize” the training corpusbut must learnthe

structureof thelanguage.

2.1.4 Training procedure

In theconditionElmanreferredto as“startingsmall,” he

trainedhis network for 5 epochson eachof thefour cor-

pora,in increasingorderof complexity. During training,

weightswereadjustedto minimize the summedsquared

errorbetweenthenetwork’s predictednext word andthe

actual next word, using the back-propagationlearning

procedure(Rumelhartetal., 1986)with a learningrateof

0.1, reducedgraduallyto 0.06. No momentumwasused

andweightswereupdatedafter eachword presentation.

Weightswere initialized to randomvaluessampleduni-

formly between6 0.001.

For eachof the five languageclasses,we trainedthe

network shown in Figure 1 using both incrementaland

non-incrementaltraining schemes.In the complex regi-

men,thenetwork wastrainedonthemostcomplex corpus

(75%complex) for 25 epochswith a fixed learningrate.

Thelearningratewasthenreducedfor afinal passthrough

thecorpus.In thesimpleregimen,thenetworkwastrained

for fiveepochsoneachof thefirst threecorporain increas-

ing orderof complexity. It wasthentrainedon thefourth

corpusfor 10 epochs,followedby a final epochat there-

ducedlearningrate. The final six epochsof training on

thefourthcorpus—notincludedin Elman’sdesign—were

intendedto allow performancewith thesimpleregimento

approachasymptote.

Becausewe were interestedprimarily in what perfor-

mancelevel was possibleunderoptimal conditions,we

searchedawiderangeof trainingparametersto determine

a set which consistentlyachieved the bestperformance

overall.3 We trainedour network with back-propagation

usingmomentumof 0.9,a learningrateof 0.004reduced

to0.0003for thefinal epoch,abatchsizeof 100wordsper

weightupdate,andinitial weightssampleduniformly be-

tween 6 1.0 (cf. 6 0.001for Elman’s network). Network

performancefor bothtrainingandtestingwasmeasuredin

termsof divergence(seeTable3). In additionto beingan

appropriatemeasureof the differencebetweentwo dis-

tributions from an information theoreticstandpoint(see

Rumelhartet al., 1995),divergencehasthe featurethat,

duringtraining,erroris injectedonly at theunit represent-

ing theactualnext word. This is perhapsmoreplausible

thanfunctionswhich provide feedbackto every word in

thevocabulary.

Becausedivergenceis well-definedonly over proba-

bility distributions(which sumto 1.0), normalizedLuce

ratios (Luce, 1986), also known as softmaxconstraints,

were applied to the output layer. In this form of nor-

malization,theactivationof outputunit 7 is calculatedby	��98;:=<=>
" �@? :A<&B
, where C � is theunit’s net input and D

rangesoverall of theoutputunits.Theremainingunitsin

thenetwork usedthestandardlogisticactivationfunction,

3Theeffectsof changesto someof theseparametervalues—inpar-
ticular, themagnitudeof initial randomweights—will beevaluatedin a
latersimulation.
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	 � 8 �FEHG : � <=> � ���
, asin Elman’snetwork.

2.1.5 Testingprocedure

Althoughthenetwork wastrainedby providing feedback

only to theactualnext wordin thesentence,theprediction

task is probabilistic. Consequently, the network cannot

possiblyachieveperfectperformanceif evaluatedagainst

theactualnext word. Optimally, thenetwork shouldpro-

ducea distribution over its outputsindicating the like-

lihood of eachword occurringnext given the sentence

context encounteredso far. Becauseour grammarswere

in standardstochastic,context-free form, it waspossible

to generatethe theoreticallycorrectnext-word distribu-

tionsgivenany sentencecontext. Suchdistributionswere

calculatedfor eachword in the final testingcorpusand

the performanceof our network was evaluatedagainst

theseoptimalpredictions.By contrast,it wasnot possi-

bleto generatesuchoptimalpredictionsbasedonElman’s

grammar. In orderto form anapproximationto suchpre-

dictions,Elmantrainedan empirical languagemodelon

sentencesgeneratedin the sameway as the testingcor-

pus. Predictionsby this model were basedon the ob-

served next-word statisticsgiven every sentencecontext

to which it wasexposed.This canbethoughtof asann-

grammodelor a k-limited Markov sourcewhosecontext

canextendbackto thebeginningof thesentence,but no

further.

2.2 Resultsanddiscussion

AlthoughElmandid notprovidenumericalresultsfor the

complex condition,he reportedthat his network wasun-

ableto learnthe taskwhentrainedon the mostcomplex

corpusfrom thestart. However, learningwaseffective in

the simpleregimen, in which the network was exposed

to increasinglycomplex input. In this condition,Elman

foundthatthenetwork achievedanoverallerrorof 0.177

when comparedagainstthe empiricalmodel (using, we

believe, city-block distance;seeTable3). However, this

typeof criterionis not a particularlygoodmeasureof the

differencebetweentwo probabilitydistributions.A better

indicatoris themeancosineof theanglebetweenthepre-

dictionvectors,by which thenetwork achieveda valueof

0.852(SD= 0.259)where1.0 is optimal.

Figure?? shows, for eachtrainingcondition,themean

divergenceerror per word on the testingcorporaof our

network whenevaluatedagainstthetheoreticallyoptimal

predictionsgiven the grammar. To reducethe effect of

outliers,andbecausewewereinterestedin thebestpossi-

bleperformance,resultswereaveragedoveronly thebest

16of 20 trials. Somewhatsurprisingly, ratherthananad-

vantagefor startingsmall,thedatarevealsasignificantad-

vantagefor thecomplex trainingregimen( I ��J �
* ) = 53.8,
K . .001). Under no conditiondid the simple training

regimenoutperformthecomplex training. Moreover, the

advantagein startingcomplex increasedwith thepropor-

tion of fully constrainedrelative clauses.Thus,therewas

a strongpositive correlationacrossindividual runs ( L =

.75, K . .001)betweenthe orderof the grammarsfrom

A–E andthe differencein error betweenthe simplever-

suscomplex trainingregimes.This is consistentwith the

ideathat startingsmall is mosteffective whenimportant

dependenciesspanuninformative clauses.Nevertheless,

againstexpectations,startingsmallfailedto improveper-

formanceeven for classA, in which relative clausesdid

not conformto semanticconstraintsimposedby thepre-

cedingnoun.

2.2.1 Hasthenetworklearnedthetask?

In interpretingtheseresults,it is importantto establish

that thenetwork wasableto masterthe taskto a reason-

abledegreeof proficiency in thecomplex regimen. Oth-

erwise,it may be the casethat noneof the training con-

ditionsproducedeffective learning,renderingany differ-

encesin performanceirrelevant to understandinghuman

languageacquisition.Averagedivergenceerrorwas0.068

for the network when trainedon corpusA + * and 0.093

whentrainedon corpusE+ * , comparedwith aninitial er-

ror of approximately2.6. TheclassE languagesyielded
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Figure2: Meandivergenceperword predictionover the
75% complex testingcorporageneratedfrom grammar
classesA throughE (increasingin theextentof semantic
constraints)for thesimpleandcomplex trainingregimes.
Notethat lower valuescorrespondto betterperformance.
Meansandstandarderrorswerecomputedover the best
16of 20 trials in eachcondition.

slightly higher error becausesemanticconstraintsforce

thenetwork to make useof moreinformationin predict-

ing the contentsof relative clauses.Informal inspection

revealedthatthenetwork appearedto performnearlyper-

fectlyonsentenceswith uptoonerelativeclauseandquite

well onsentenceswith two relativeclauses.

Figure?? comparestheoutputactivationsof anetwork

trainedexclusively on corpusE+ * with the optimal out-

puts for that grammar. The behavior of the network is

illustratedfor thesentencesBoy who chases girls who

sing walks andDogs who chase girls who sing walk.

Note, in particular, the predictionof the main verb fol-

lowing sing. Predictionsof thisverbarenot significantly

degradedevenafter two embeddedclauses.Thenetwork

is clearlyableto recall thenumberof themainnounand

hasa basicgraspof thedifferentactionsallowedon dogs

andhumans.It nearlymasteredtherule thatdogscannot

walk somethingelse.It is, however, unsureacrossa dou-

ble embeddingthatboys arenot allowedto bite andthat

dogsmay bark, but not sing. Otherwise,the predictions

appearquitecloseto optimal.

For sentenceswith threeor four clauses,suchasDog

who dogs who boy who dogs bite walks bite chases

cat who Mary feeds, performanceof the networkswas

considerablyworse.Note,however, thathumansaregen-

erally unableto parsesuch sentenceswithout multiple

readings. In addition, fewer than 5% of the sentences

in themostcomplex corporawereover ninewordslong.

This limitation was necessaryin order to matchthe av-

eragesentence-lengthstatisticsin Elman’s corpora,but it

did not provide sufficient exposureto suchsentencesfor

the network to masterthem. Interestingly, the network

wasonly 8.2%worseon thetestingsetthanon thetrain-

ing setwhentrainedon corpusE+ * , andonly 5.4%worse

whentrainedonA + * . Thesefindingsindicatethatthenet-

work generalizedquite well to novel sentencesbut was

still slightly sensitive to the particularcharacteristicsof

thetrainingcorpus.

However, it shouldbe notedthat this analysisis not a

cleantest of generalizationas many of the shortersen-

tencesin thetestingcorpusappearedin thetrainingcorpus

aswell. Table?? givesa breakdown of performanceof

a samplenetwork from thepreviousanalysis,which was

trainedonly on the E+ * corpus,on thosesentencesthat

appearedon both the training and testingset (“Familiar

Sentences”)andthoseonly in thetestingset(“Novel Sen-

tences”). The resultsindicatethat the meandivergence

error per word of the network was only 3.5% greater

on novel versusfamiliar sentencesinvolving onerelative

clauseand 16.6% greateron novel sentencesinvolving

two relativeclauses.4 Thus,thenetworkgeneralizedfairly

well, but certainlynotperfectly.

A strongertest than predicting individual words for

whethera network has learneda grammaris the one

standardlyemployed in linguistic studies:grammatical-

ity judgmentof entire sentences.Although the word-

predictionnetworksdonotdeliverovertyes/noresponses

4The comparisonfor simple sentencesand for very complex sen-
tencesis unreliablebecausetherewerevery few novel simplesentences
andno very complex sentencesthat appearedbothduring training and
testing.
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Figure3: Predictionsof thenetwork trainedon corpusE+ * on two samplesentences(white bars)comparedwith the
optimalpredictionsgiventhegrammar(filled bars).To enhancecontrast,all valuesshown arethesquareroot of the
actualprobabilities.

Table5: Analysisof theE+ * testingcorpusandperformanceof anetwork on familiarandnovel sentences.
MeanDivergenceError

Relative Total Unique Percent Familiar Novel
Clauses Sentences Sentences Novel Sentences Sentences ExampleNovel Sentence

0 2548 230 1.3 0.011 0.019 boy chases dog .

1 5250 2413 53.4 0.043 0.045 dogs who John walks chase
girl .

2 1731 1675 94.3 0.110 0.123 dog who chases John who
feeds cats bites Mary .

3 395 395 100 0.242 0.247 John feeds cats who bite
cats who Mary who walks
dog feeds .

4 76 76 100 0.359 0.364 girls who walk dogs who bite
Mary who cats who chase
Mary chase sing .

Overall 10000 4789 69.8
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to grammaticalversusungrammaticalsentences,we as-

sumethis decisioncan be basedon the accuracy of its

predictionsthroughouta given sentence(seealso Allen

& Seidenberg, 1999). Specifically, theword encountered

at thepoint at which a sentencebecomesungrammatical

will be poorly predictedandwill likely causepoor pre-

dictionsfor subsequentwords. Accordingly, asa simple

approximation,weselectedthetwo wordsthatweremost

“surprising” to the network (thoseto which the network

assignedtheleastlikelihood)andtookthelog of theprod-

uctof thetwo likelihoodsasa measureof the“goodness”

of the sentencefor the purposeof judging its grammati-

cality.

In orderto obtaingrammaticalandungrammaticalsen-

tencesfor thistest,wetookeachsentencein theE+ * gram-

marandperformedanumberof transformations.Weused

thesentencein its original form, eachsentenceproduced

by removing oneof its words(not including theperiod),

andeachsentenceproducedby replacinga singleword

with someother word. A sentencehaving five words

would thusresultin 126derivedsentences.Eachderived

sentencewasthenclassifiedasgrammatical, accordingto

theE+ * grammar, semanticallyinvalid, or syntacticallyin-

valid. Syntacticallyinvalid sentencesarethosethatwould

not be acceptedby the E+ * grammareven if all of the

semanticconstraintswere removed. For example,boy

chases who or boy who chases cats walk. Seman-

tically invalid sentences,on theotherhand,would beac-

ceptedby the grammarwith no semanticconstraintsbut

are ruled out by the semanticconstraints.For example,

boy bites dog. Note that the invalid sentencesare far

from randomcollectionsof wordsanddiffer from valid

sentencesin only a singleword. Often the invalid sen-

tencesarevalid far beyond the point at which the trans-

formationtookplace.

The selectednetwork, trained only on the E+ * cor-

pus, was run on eachof the derived sentencesand the

strengthwith whichit predictedeachword recorded.Fig-

ure ?? shows the distribution of the goodnessmeasure
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Figure 4: Distributions of a measureof grammaticality
for fully grammaticalsentences,for sentenceswhichvio-
latesemanticconstraints(but obey syntacticconstraints),
andfor sentenceswhich violatesyntactic(andsemantic)
constraints.Themeasureis the log of theproductof the
two worstword predictionsin thesentence—seetext for
details.

for sentencesin eachof the threecategories. It is ap-

parentthat themeasuredoesa fairly goodjob of pulling

apartthe threedistributions. We cannow askhow well

variousjudgmentscan be madegiven the measure.On

thestandardgrammaticalityjudgmenttaskof distinguish-

ing correctsentencesfrom thosewith a syntacticviola-

tion, a decisioncriterionof
�9[ 1]\�^ yieldshighly accurate

performance,with only 2.21%falsepositivesand2.95%

misses( _ ` = 3.90). In fact, the network canalsodistin-

guish, althoughsomewhat lessaccurately, syntactically

legal sentenceswith semanticviolations (cf. “Colorless

greenideas....”) from sentenceswith true syntacticvio-

lations:a decisioncriterionof
� ^21 ab/ yields19.6%false-

alarmsand12.7%misses( _b` = 2.00). Note that, in this

lattercase,thenetwork neverencounteredsentencesof ei-

thertypeduringtraining. Also notethat thesyntactically

invalid sentenceswerenot simply randomword jumbles

but differedfrom a valid sentenceby only a singleword.

The “goodness”measurecanalsoprovide a basisfor

determiningwhat factorsinfluencethe relative effective-

nessof processingvarioustypesof valid sentences.Not

surprisingly, goodnessgenerallydecreaseswith thenum-

14



RohdeandPlaut LanguageAcquisitionandStartingSmall

ber of embeddingsin the sentence(meansof
� 321 [ ^ ,� 3c1]\ E , �9[ 1d3e/ , �9[ 1]\�3 for sentenceswith 1, 2, 3, or 4

embeddings,respectively; K . .001for all pairwisecom-

parisons). Interestingly, sentenceswith no embeddings

producesomewhatlowervalues(mean
� 3c1 a [ ) thanthose

with oneembedding(
� +�+�fhg = 5.51, K . .001),but this is

attributableto the unnaturallylow proportionof simple

sentencesin theE+ * corpusby construction(25.5%sim-

ple vs.52.5%singly-embeddedsentences).Amongcom-

plex sentences,center-embeddedsentenceshave higher

goodnessthan purely right-branchingsentences(means� 3c1 a / vs.
� 3c14^�i ;

� g ��� f = 7.40, K . .001) but, again,

this is highly confoundedwith frequency (50.9% vs.

11.3%of sentences,respectively). Right-branchingsen-

tenceshave highergoodnessthanobject-relative center-

embeddedsentences—asubclasswith comparablefre-

quency (10.3%of sentences,meangoodnessof
� 3c1]\�^ ;� �j�F* + = 6.947,K . .001).This latterfindingis morein ac-

cordwith whatwouldbeexpectedto hold for humansub-

jects,but it shouldbekeptin mindthatthecurrentcorpora

werenot designedto matchthe distribution of syntactic

constructionsfoundin English.

Having providedevidencethatarepresentativenetwork

has, in fact, learnedthe grammarreasonablywell (al-

thoughcertainlynot perfectly)we canreturnto theques-

tion of the basisfor our failure to find an advantagefor

startingsmall. Onepossibility is that, althoughthe net-

work trainedin thesmall regimenmight have performed

more poorly overall, it may nonethelesshave learned

long-distancedependenciesbetterthanwhentrainedwith

the complex regimen. To test this hypothesis,we com-

putedthetotalprobabilityassignedto ungrammaticalpre-

dictions(i.e., wordsthatcould not, in fact, comenext in

the sentence),as a function of sentenceposition of the

predictedword (seeFigure??). In general,fewer than8

of the26 wordswerelegalat any point in a sentencepro-

ducedby grammarE+ * . Overall, performancedeclined

with wordposition(exceptfor position16whichcanonly

beend-of-sentence).This trendis duelargely to the fact
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grammaticalpredictions,asa functionof the positionof
thepredictedword in sentencesfrom grammarsA andE,
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averagedoverall 20networkstrainedin eachcondition.

that early positionsaredominatedby predictionswithin

simplesentences,whereaslater positionsaredominated

by predictionswithin complex sentenceswith multiple

embeddings.Evenso,17%of the total outputactivation

spreadover 18 illegal words is respectable,considering

that randomizedweightsproduceabout71% illegal pre-

dictions. More importantly, acrossword positions,the

complex training regimen producedbetterperformance

thanthesimpletrainingregimen( I �jJ �F* = 25.7,K . .001).

In summary, startingwith simpleinputsprovedto beof

no benefitandwasactuallya significanthindrancewhen

semanticconstraintsappliedacrossclauses.Thenetworks

wereable to learn the grammarsquite well even in the

complex training regimen. Moreover, the advantagefor

trainingon thefully complex corpusincreasedasthelan-

guagewasmademoreEnglish-like by enforcinggreater

degreesof semanticconstraints.While it hasbeenshown

previously thatbeginningwith a reducedtrainingsetcan

bedetrimentalin classificationtaskssuchasexclusive-OR

(Elman,1993), it appearsthat beginning with a simpli-

fiedgrammarcanalsoproducesignificantinterferenceon

a morelanguage-like predictiontask. At the very least,
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startingsmall doesnot appearto beof generalbenefitin

all languagelearningenvironments.

3 Simulation 2: Replication of Elman’s
(1993) study

Our failure to find anadvantagefor startingsmall in our

initial work led us to askwhat differencesbetweenthat

studyandElman’swereresponsiblefor thediscrepantre-

sults. All of the grammarsin the first setof simulations

differedfrom Elman’s grammarin that the languagere-

tainedfull semanticconstraintswithin themainclause.It

is possiblethatwithin-clausedependencieswerein some

way responsiblefor aidinglearningin thecomplex train-

ing regimen.Therefore,we produceda language,labeled

R for replication, which was identical to Elman’s in all

knownrespects,thusruling outall but themostsubtledif-

ferencesin languageasthesourceof ourdisparateresults.

3.1 Method

Like Elman’s grammar, grammarR usesjust 12 verbs:

2 pairseachof transitive, intransitive, andmixed transi-

tivity. In addition, as in Elman’s grammar, the proper

nounsMary and John could not be modified by a rel-

ative clauseandthe only additionalconstraintsinvolved

numberagreement.We shouldnote that, althoughour

grammarandElman’s producethesamesetof stringsto

the bestof our knowledge,the probability distributions

overthestringsin thelanguagesmaydiffer somewhat.As

before,corporawith four levelsof complexity werepro-

duced.In thiscasethey exactlymatchedElman’scorpora

in termsof averagesentencelength(seeTable4).5

Networksweretrainedon this languagebothwith our

own methodsandparametersandwith thoseascloseas

possibleto theonesElmanused. In the formercase,we

usednormalizedoutputunitswith adivergenceerrormea-

5To matchtheaveragelengthsof sentencesgeneratedby grammarR
ascloselyaspossibleto thoseproducedby Elman’s grammar, theselec-
tion probabilitiesfor intransitive verbsacrossthe levels of complexity
(0%, 25%, 50%, and 75%) were increasedfrom 50% for each(as in
grammarclassesA–E) to 54%,65%,75%,and50%,respectively.

sure,momentumof 0.9,elevenepochsof trainingon the

final corpus,a batchsizeof 10 words,a learningrateof

0.004 reducedto 0.0003for the last epoch,and initial

weightsbetween6 E
. In the latter case,we usedlogis-

tic outputunits,squarederror, nomomentum,fiveepochs

of training on the fourth corpus,online weight updating

(afterevery word), a learningrateof 0.1 reducedto 0.06

in equalstepswith eachcorpuschange,andinitial weights

between6r/21d/e/ E .

3.2 Resultsanddiscussion

Even when training on sentencesfrom a grammarwith

no semanticconstraints,our learningparametersresulted

in an advantagefor the complex regimen. Over the best

12 of 15 trials, the network achieved an averagediver-

genceof 0.025 under the complex condition compared

with 0.036for the simple condition ( I ��J ��� = 34.8, K .
.001). Aside from the learningparameters,one impor-

tantdifferencebetweenour trainingmethodandElman’s

was that we added6 extra epochsof training on the fi-

nal corpusto bothconditions.This extendedtrainingdid

not,however, disproportionatelybenefitthecomplex con-

dition in someway. Betweenepoch20and25,theaverage

divergenceerrorunderthesimpleregimendroppedfrom

0.085to 0.061. During the sameperiod,the error under

thecomplex regimenfell only from 0.051to 0.047.6

It is againimportantto establishthat thenetwork was

actuallylearningto performthetaskwell. Otherwisethe

apparentadvantagefor startinglargemight beanartifact

of settlinginto localminimaduetopoortrainingmethods.

Thebestmeasureof network performancewould appear

to be a direct comparisonwith the resultspublishedby

Elman(1991).However, asdiscussedearlier, Elmaneval-

uatedhisnetwork usingempiricallyderivedprobabilities,

ratherthanpredictionsgenerateddirectly from thegram-

mar.

6The further drop of theseerror values,0.047and0.061,to the re-
portedfinal valuesof 0.025and0.036resultedfrom theuseof areduced
learningratefor epoch26.
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In order to approximateElman’s evaluationmethods,

we trainedanempiricalmodelon theR+ * testingcorpus,

aswell ason 240,000additionalsentencesproducedby

thesamegrammar. Elmanreporteda final errorof 0.177

for his network (using,we believe, city-block distance).

When trainedon corpusR+ * and evaluatedagainstthe

empiricalmodel,our network producedan averagecity-

block distanceof 0.240 (over the best12 runs), which

would seemto beconsiderablyworse.However, asmen-

tionedearlier, cosineis a moreaccuratemeasureof the

differencesbetweenprobability distributions. Our net-

work had an averagecosineof 0.942,which is consid-

erablybetterthanthevalueof 0.852reportedby Elman.

However, the empirical model itself provides a poor

matchto thetheoreticallyderivedpredictionsand,hence,

is not an appropriatebasisfor evaluating the extent to

which a network haslearnedthestructureof a grammar.

Specifically, whenevaluatedagainstthe theoreticalpre-

dictions, the empiricalmodelhada meandivergenceof

0.886, a city-block distanceof 0.203, and a cosineof

0.947. Thesevaluesare all much worsethan thosefor

thenetwork which,whencomparedagainstthesamecor-

rectpredictions,produceda meandivergenceof 0.025,a

distanceof 0.081,anda cosineof 0.991,even thoughit

was trainedon only 10,000differentsentences(cf. over

250,000sentencesfor theempiricalmodel). Thus,asfar

aswecantell, ournetwork learnedgrammarR at leastas

well underthecomplex trainingregimenasElman’s net-

work did underthesimpleregimen.

BecausegrammarR hasso few constraints,it might

be thoughtthat this is a moredifficult taskthanlearning

a grammarwith full semantics.It is true that the prob-

lem spacebecomesmore sparseas we add constraints,

andtheentropy of theoptimalpredictionsis higherwith-

out theconstraintsbecausemorealternativesarepossible.

However, the amountof informationthat mustbe stored

to formulatean accuratepredictionis muchlower with-

out semantics.Althoughthepredictionerrorwhenmea-

suredagainstthe actualnext word is likely to be higher

for the purely syntacticgrammar, the error when mea-

suredagainstthe optimal distribution is lower. This is

reflectedby thefactthatthenetwork achievedanaverage

divergenceerrorof 0.025in this simulationversus0.093

for theclassE languagewith full semanticconstraintsin

Simulation1.

Whenthenetwork wastrainedusingparameterssimi-

lar to thosechosenby Elman,it failedto learnadequately,

settlinginto badlocal minima. Thenetwork consistently

reacheda divergenceerrorof 1.03underthesimpletrain-

ing regimen and 1.20 under the complex regimen, re-

gardlessof the initial randomweight values. In terms

of city-block distance,theseminimafall at 1.13and1.32

respectively—muchworsethantheresultsreportedby El-

man. Observationof thenetwork in thesimplecondition

revealedthat it was able to learn only the second-order

statisticsof thelanguage,andeventhesewerenot learned

particularlywell. Thenetwork learnedthatthewordwho

couldonly follow anoun,butnotthatasingularheadnoun

couldneverbefollowedby anothernounor a pluralverb.

On theotherhand,in thecomplex condition,thenetwork

learnedonly the first-orderstatistics,giving predictions

whichapproximatedtheoverallword frequenciesregard-

lessof context. Examinationof the connectionweights

revealedthatall inputweightsandbiasesto thethreehid-

denlayershadapproachedzero. It is not clearwhy we

find suchpoor performancewith what we believe to be

similar trainingmethodsto thoseusedby Elman.

We did, however, obtainsuccessfullearningby using

thesameparametersbut simply increasingtheweightini-

tialization rangefrom 6r/21d/e/ E to 6 E 1d/ , althoughperfor-

manceundertheseconditionswas not quite as good as

with all of ourparametersandmethods.Evenso,weagain

found a significantadvantagefor the complex regimen

over thesimpleregimenin termsof meandivergenceer-

ror (meansof 0.122vs.0.298,respectively; I �jJ �h� = 121.8,
K . .001).

Giventhat thestrengthof initial weightsappearsto be

a key factor in successfullearning,we conducteda few
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Figure6: Sumsquarederrorproducedby thenetwork on
the testingset at eachepochof training on corpusR+ *
underthecomplex regimen,asa functionof therangeof
initial randomweights.

additionalrunsof thenetwork to examinetherole of this

factor in moredetail. The networks weretrainedon 25

epochsof exposureto corpusR+ * underthecomplex reg-

imenusingparameterssimilar to Elman’s, althoughwith

a fixedlearningrateof 1.0 (i.e., without annealing).Fig-

ure ?? shows the sum squarederror on the testingcor-

pusover thecourseof training. It is apparentthat larger

initial weightshelp the network breakthroughthe first-

orderplateauwhich lies at an error valueof 0.221. Per-

formancewas remarkablysensitive to rangesof initial

weightsaround6r/21 E . It is interestingthatthenetworkcan

remainat theplateaufor up to twentyepochs,processing

200,000sentences(about1.2million words),beforesuc-

cessfullybreakingthrough.

3.3 Additionalmanipulations

Although we have yet to find conditionsunder which

startingwith simplified inputsaidedsuccessfullearning

of a simple recurrentnetwork, therearecertainlysitua-

tions in which this is thecase.It is possiblethatthesim-

plicity of our languagescreatedan unnaturaladvantage

for thecomplex regimen. What, then,is requiredto cre-

atea taskin which startingsmall is helpful, andaresuch

tasksreasonableapproximationsof naturallanguagepro-

cessing?To answerthis question,we performedtwo ad-

ditional manipulations,one involving the removal of all

constraintson embeddedclausesand one extendingthe

taskto a languagewith 100%complex sentences.

3.3.1 Uninformativeembeddings

In grammarA, as well as in Elman’s grammar, verbs

in subject-relative embeddedclauseswereconstrainedto

agreein numberwith themodifiednoun.Wemightexpect

thatthispartialinformationwasresponsiblefor theability

of thenetworkstrainedin thecomplex conditionto learn

thenoun-verbdependenciesspanningtheembeddings.To

testthis, we constructeda new grammar, A ` , which was

similarto A with theexceptionthatall constraints,includ-

ing numberagreement,wereremovedon thecontentsof

embeddedclausesor betweennounsandverbswithin rel-

ative clauses. Full semanticand agreementconstraints

were left intact only within the main clause. This was

doneto assesstheability of thenetwork to learnthediffi-

cult mainverbpredictionwith nosupportfrom preceding

wordsotherthanthemainnounitself. As before,fourver-

sionsof the grammarwereproduced,rangingfrom 0%

to 75% complex. A separatetestingcorpuswas gener-

atedfrom the samegrammarasthe last training corpus.

Twenty trials eachof thecomplex andsimpleconditions

wereperformed.Thesametrainingparametersandexpo-

sureswereusedasin Simulation1.

Analysisof thebest16of 20 trials revealedanaverage

divergenceerrorof 0.080in thesimpleregimenand0.079

in the complex regimen( Ix. 1, n.s.). Therefore,even

in the casewhereall constraintson the relative clauses

areremoved,startingsmalldoesnot prove beneficial,al-

thoughit is no longerahindrance.

3.3.2 100%complex sentences

Although Elman (1991) limited the compositionof his

corporato 75% complex, his later paper(Elman,1993)

reportssimulationswhich addeda fifth corpus,consist-

ing entirely of complex sentences. While a language
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composedentirely of complex sentencesis not a realis-

tic modelof English, it is certainly true that the current

grammarsoverlookmany complexitiesof naturalEnglish.

Therefore,onemight view this 100%complex language

asa surrogatefor onein which nearlyall sentencescon-

tainsomecomplex grammaticalstructure,if nota relative

clauseperse.

In addition to the original four training corpora for

grammaticalclassesE, A, andA ` , a fifth, entirely com-

plex corpuswasgeneratedfor eachof theseclasses(i.e.,

E� )h) , A � )�) , andA ` � )h) ), alongwith correspondingtesting

corpora. The samelearningparameterswereusedas in

Simulation1. In the simple regimen, the network was

trainedfor five epochson eachof the first four corpora

and then for 10 epochson the all-complex corpus,fol-

lowedby onemoreepochat thereducedlearningrateof

0.0003.In thecomplex regimen,thenetwork wassimply

trainedon thefifth corpusfor 30 epochsfollowedby one

epochat thereducedlearningrate.

Despitethe elimination of all simple sentencesfrom

thefinal corpus,thenetwork showednoadvantagefor the

simpleregimenon grammarclassesE andA. For E, the

complex regimenproducedanaveragedivergenceon the

best16 of 20 trials of 0.112comparedwith 0.120for the

simpleregimen( I ��J ��� = 1.46,Kzy .2). For A, thecomplex

regimenyieldedan error of 0.078comparedwith 0.081

for simpleregimen( I �jJ �h� = 1.14,K{y .2). By contrast,for

classA ` , in whichtherewereabsolutelynoconstraintsex-

ceptin themainclause,thesimpleregimenoutperformed

the complex regimen(meansof 0.064vs. 0.105,respec-

tively; I ��J ��� = 6.99, K . .05). Therefore,startingsmall

can be beneficialin certaincircumstances.We would,

however, argue that A ` � )�) is not at all representative of

naturallanguage,in which relative clausesarehighly de-

pendentonwhatthey aremodifyingandsimplesentences

arequitecommon.

In summary, on a grammaressentiallyidenticalto that

usedby Elman(1991,1993),we found a robust advan-

tagefor trainingwith thefull complexity of the language

from the outset. Although we cannotdirectly compare

the performanceof our network to that of Elman’s net-

work, it appearslikely thatthecurrentnetwork learnedthe

taskconsiderablybetterthantheempiricalmodelthatwe

usedfor evaluation.By contrast,thenetwork wasunable

to learnthe languagein eitherthesimpleor thecomplex

conditionwhenwe usedparameterssimilar to thoseem-

ployed by Elman. However, increasingthe rangeof the

initial connectionweightsallowed the network to learn

quitewell, althoughin this casewe againfounda strong

advantagefor startingwith thefull grammar. It waspos-

sible to eliminatethis advantageby removing all depen-

denciesbetweenmain clausesand their subclauses,and

evento reverseit by trainingonly on complex sentences.

However, thesetrainingcorporabearfar lessresemblance

to the actualstructureof naturallanguagethando those

which producea clearadvantagefor training on the full

complexity of thelanguagefrom thebeginning.

4 Simulation 3: Progressive memory

Elman(1993)arguedthathisfinding thatinitially simpli-

fied inputs were necessaryfor effective languagelearn-

ing wasnotdirectlyrelevantto child languageacquisition

because,in his view, therewaslittle evidencethatadults

modify thegrammaticalstructureof theirspeechwhenin-

teractingwith children(althoughwe woulddisagree;see,

e.g.,Gallaway & Richards,1994;Snow, 1995;Sokolov,

1993). As analternative, Elmansuggestedthat thesame

constraintcould be satisfiedif the network itself, rather

thanthe trainingcorpus,wasinitially limited in its com-

plexity. Following Newport’s “less is more” hypothesis

(Newport, 1990; Goldowsky & Newport, 1993), Elman

proposedthat thegradualmaturationof children’s mem-

ory and attentionalabilities could actuallyaid language

learning. To testthis proposal,Elman(1993)conducted

additional simulationsin which the memory of a sim-

ple recurrentnetwork (i.e., theprocessof copying hidden

activationsonto the context units) wasinitially hindered
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and then allowed to gradually improve over the course

of training. Whentrainedon the full complexity of the

grammarfrom theoutset,but with progressively improv-

ing memory, the network wasagainsuccessfulat learn-

ing the structureof the languagewhich it had failed to

learnwhenusingfully maturememorythroughouttrain-

ing. In this way, Elman’s computationalfindingsdove-

tailedperfectlywith Newport’sempiricalfindingsto pro-

videwhatseemedlikecompellingevidencefor theimpor-

tanceof maturationalconstraintson languageacquisition

(see,e.g.,Elmanetal., 1996,for furtherdiscussion).

Given that the primary computationalsupportfor the

“less is more” hypothesiscomesfrom Elman’s simula-

tions with limited memoryratherthanthosewith incre-

mentaltrainingcorpora,it is importantto verify thatour

contradictoryfindings of an advantagefor the complex

regimen in Simulations1 and 2 also hold by compari-

son with training under progressively improving mem-

ory.7 Accordingly, we conductedsimulationssimilar to

thoseof Elman, in which a network with graduallyim-

proving memorywastrainedonthefull semanticallycon-

strainedgrammar, E, aswell ason the replicationgram-

mar, R, usingbothElman’s andour own trainingparam-

eters. As for Simulation1, any differencesbetweenour

methodsandElman’sarementionedexplicitly.

4.1 Method

In his limited-memorysimulation,Elman(1993)trained

a network exclusively on the complex corpus,which he

hadpreviouslyfoundto beunlearnable.It is unclearfrom

the text, however, whetherhe usedthe corpuswith 75%

or 100%complex sentencesin thissecondsimulation.As

a modelof limited memoryspan,the recurrentfeedback

providedby thecontext layerwaseliminatedperiodically

7Goldowsky & Newport (1993)provide an illustrationof how ran-
domly degradedinput couldaid learningin a morphology-like associa-
tion task. However, theresultsappearto dependlargely on their useof
a learningmechanismthat collectsco-occurrencestatisticsratherthan
perhapsmoreappropriatecorrelations. It is not clearwhethersimilar
resultscould be obtainedin a mechanismattemptingto learn natural
languagesyntax.

during processingby settingthe activationsat this layer

to 0.5. For the first 12 epochsof training, this wasdone

randomlyafter 3–4 words had beenprocessed,without

regardto sentenceboundaries.For thenext 5 epochsthe

memorywindow wasincreasedto 4–5words,thento 5–6,

6–7,andfinally, in the laststageof training,thememory

wasnot interferedwith atall.

In thecurrentsimulation,thetrainingcorpusconsisted

of 75%complex sentences,although,asmentionedabove,

Elman’smayhaveextendedto 100%complexity. LikeEl-

man,we extendedthefirst periodof training,which used

a memorywindow of 3–4 words, from 5 epochsto 12

epochs.We thentrainedfor 5 epochseachwith windows

of 4–5 and5–7 words. The lengthof the final periodof

unrestrictedmemorydependedon the training methods.

Whenusingourownmethods(seeSimulation2),aswhen

trainingonthefinal corpusin thesimpleregimen,thispe-

riodconsistedof 10epochsfollowedby onemorewith the

reducedlearningrate.Whentrainingwith ourapproxima-

tion of Elman’s methodson grammarR, this final period

wassimply five epochslong. Therefore,underbothcon-

ditions,thememory-limitednetwork wasallowedto train

for a total of 7 epochsmorethanthecorrespondingfull-

memorynetwork in Simulations1 and2. Whenusingour

methods,learningratewasheldfixeduntil thelastepoch,

asin Simulation1. With Elman’smethod,wereducedthe

learningratewith eachchangein memorylimit.

4.2 Resultsanddiscussion

Although he did not provide numericalresults,Elman

(1993) reportedthat the final performancewas as good

as in the prior simulation involving progressive inputs.

Again, this was deemeda successrelative to the com-

plex, full-memoryconditionwhichwasreportedlyunable

to learnthetask.

Usingour trainingmethodsonlanguageR, thelimited-

memoryconditionresultedin equivalentperformanceto

thatof thefull-memorycondition,in termsof divergence
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error (meansof 0.027 vs. 0.025, respectively; I �jJ �h� =

2.12, K|y .15). Limited memorydid, however, provide a

significantadvantageoverthecorrespondingprogressive-

inputs condition from Simulation2 (mean0.036; I �jJ �h�
= 24.4, K . .001). Similarly, for languageE, the limited-

memoryconditionwasequivalentto thefull-memorycon-

dition (meanof 0.093for both; I}. 1) but betterthanthe

progressive-inputsconditionfrom Simulation2 (meanof

0.115; I ��J ��� = 31.5,K . .001).

With Elman’s trainingmethodsongrammarR, thenet-

work with limited memoryconsistentlysettledinto the

samelocalminimum,with adivergenceof 1.20,asdid the

network with full memory(seeSimulation2). Using the

sameparametersbutwith initial connectionweightsin the

range6 1.0,thelimited-memorynetworkagainperformed

equivalently to the network with full memory(meansof

0.130vs.0.122,respectively; I ��J ��� = 2.39,K{y 0.10),and

significantlybetterthanthefull-memorynetwork trained

with progressive inputs(meanof 0.298; I �jJ �h� = 109.1,K
. .001).

To summarize,in contrastwith Elman’sfindings,when

training on the fully complex grammarfrom the outset,

initially limiting the memoryof a simple recurrentnet-

work providednoadvantageover trainingwith full mem-

ory, despitethe fact that the limited-memoryregimenin-

volved7 moreepochsof exposureto thetrainingcorpus.

On the other hand, in all of the successfulconditions,

limited memorydid provide a significantadvantageover

graduallyincreasingthe complexity of the training cor-

pus.

5 General discussion

Basedon theapparentlack of abundantexplicit negative

evidenceprovided to childrenduring languagelearning,

andtheformallearnabilityresultsof Gold(1967)andoth-

ers, it is often assumedthat innatelinguistic constraints

arerequiredfor effective languageacquisition.However,

languagelearningis possibleusingimplicit negative evi-

dencederivedfrom implicit predictionswithin a stochas-

tic languageenvironment. In fact, Elman (1991, 1993)

demonstratedthatarecurrentconnectionistnetwork could

learnthestructureof a pseudo-naturallanguagebasedon

continuallypredictingthe next word to occur in a large

corpusof sentences.Learningwas effective, however,

only if eitherthetrainingsentencesor thenetwork’smem-

ory wereinitially limited andgraduallyincreasedin com-

plexity. Elman’sfindingsseemto imply thatstandardcon-

nectionistassumptionsareinsufficientfor languagelearn-

ing,andadditionalconstraints—perhapsbasedonmatura-

tional factors(Newport, 1990)—mustbe introduced(see

Elmanetal., 1996,for discussion).

Thefirst simulationof thecurrentwork demonstrated,

to the contrary, that it is possiblefor a standardsimple

recurrentnetwork to gainreasonableproficiency in a lan-

guageroughly similar to that designedby Elman with-

out stagedinputsor memory. In fact,therewasa signifi-

cantadvantagefor startingwith thefull language,andthis

advantageincreasedaslanguagesweremademorenatu-

ral by increasingtheproportionof clauseswhich obeyed

semanticconstraints(seealsoCleeremanset al., 1989).

Theremay, of course,be other training methodswhich

would yield even betterperformance. However, at the

very least,it appearsthat “startingsmall” is not a robust

phenomenonin simplerecurrentnetworks.

In order to identify the factorsthat led to the disad-

vantagefor startingsmall, we returnedto a moredirect

replicationof Elman’s work in Simulation2. Using El-

man’s parameters,we did find whatseemedto beanad-

vantagefor startingsmall, but the network failed to suf-

ficiently masterthe taskin this condition. We do not yet

understandwhat led Elman to succeedin this condition

wherewe failed. One observation madein the course

of thesesimulationswas that larger initial randomcon-

nectionweightsin thenetwork werecrucial for learning.

We thereforereappliedElman’s training methodsbut in-

creasedthe rangeof the initial weightsfrom 6r/~1 / / E to

6 E 1 / . Both this conditionandour own trainingparame-
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tersrevealeda strongadvantagefor startingwith the full

language.

Finally, in Simulation 3 we examined the effect of

progressive memorymanipulationssimilar to thoseper-

formedby Elman(1993). It was found that, despitein-

creasedtraining time, limited memoryfailed to provide

an advantageover full memoryin any condition. Inter-

estingly, trainingwith initially limited memorywasgen-

erally lessof a hindranceto learningthan training with

initially simplified input. In all cases,though,successful

learningagainrequiredtheuseof sufficiently largeinitial

weights.

The dependenceof learningon the magnitudesof ini-

tial weightscanbeunderstoodin light of propertiesof the

logistic activation function, the back-propagationlearn-

ing procedure,andtheoperationof simplerecurrentnet-

works. It is generallythoughtthatsmall randomweights

aid error-correctinglearning in connectionistnetworks

becausethey put unit activationswithin the linear range

of thelogistic functionwhereerrorderivatives,andhence

weight changes,will be largest. However, the error

derivatives that are back-propagatedto hiddenunits are

scaledby their outgoingweights;feedbackto the restof

thenetwork is effectively eliminatedif theseweightsare

too small. Moreover, with very small initial weights,the

summedinputsof unitsin thenetwork areall almostzero,

yieldingactivationsverycloseto 0.5 regardlessof thein-

put presentedto the network. This is particularlyprob-

lematic in a simplerecurrentnetwork becausethencon-

text representations(copiedfrom previoushiddenactiva-

tions)containlittle if any informationaboutprevious in-

puts. Consequently, considerablyextendedtraining may

berequiredto accumulatesufficientweightchangesto be-

gin todifferentiateeventhesimplestdifferencesin context

(seeFigure??). By contrast,startingwith relatively large

initial weightsnotonly preservestheback-propagateder-

ror derivativesbut alsoallows eachinput to have a dis-

tinctandimmediateimpactonhiddenrepresentationsand,

hence,oncontext representations.Althoughtheresulting

patternsmaynot beparticularlygoodrepresentationsfor

solvingthetask(becausetheweightsarerandom),they at

leastprovide an effective startingpoint for beginning to

learntemporaldependencies.8

In the remainderof this article, we discussother ap-

parentdemonstrationsof theimportanceof startingsmall,

andwhy recurrentnetworkscanlearneffectively without

introducingthisconstraint.We thenconsidertheimplica-

tionsof our findingsfor argumentsconcerningtheuseof

implicit negative evidenceandthe needfor maturational

constraintson languageacquisition.

5.1 Previousreplications

Therehave beena numberof informal reportsof replica-

tionsof Elman’sbasicfindingof anadvantagefor starting

small.However, acommonfactorin thesesimulationsap-

pearsto bethatnetworks trainedexclusively on complex

inputswerenot allowedsufficient trainingtime giventhe

initial randomweights.As we showedin Figure??, it is

possiblefor anetwork in thecomplex conditionto remain

seeminglyentrenchedin a local minimumfor sometime

beforebreakingthroughandattainingbetterultimateper-

formancethana network trainedin the simplecondition

for anequivalentperiod. It maybethat,in suchapparent

replications,networks trainedin the complex condition

wereterminatedbeforethisbreakthroughcouldoccur.

Another problem may be that the learning parame-

terschosenresultedin pooroverall performancefor both

training regimens,in which case,it would be unwiseto

concludethatapparentdifferencesin performancereflect

meaningfuladvantagesfor one regimen over the other.

For example,Joyce (1996)claimedto have successfully

replicatedElman’s results,but his networks obtaineda

final cosineerror of only 0.785 (evaluatedagainstem-

pirically derivedprobabilities),comparedwith valuesof

8There is the potential complementaryproblem of using initial
weightsso large that unit activationsarepinnedat the extremesof the
logistic functionwhereits derivative vanishes.However, thisproblemis
mitigatedto someextentby theuseof anerrorfunctionlike divergence
thatgrowsexponentiallylargeasthederivative for aunit ontheincorrect
sideof thelogistic functionbecomesexponentiallysmall.
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0.852obtainedby Elman and 0.942obtainedusing our

parametersin Simulation2. In evaluatingthesenumbers,

notethatassigninguniformprobabilityacrosswordsgives

acosineof 0.419againsttheempiricalmodelfrom Simu-

lation1. Usingfirst-orderstatistics(i.e,wordfrequencies)

yields a cosineof 0.476,and using second-orderstatis-

tics (i.e., including thepreviousword) yieldsa cosineof

0.780.Thus,Joyce’smodelis doingonly aboutaswell as

the second-orderstatistics.Theperformanceof Elman’s

network (0.852)is not quiteasgoodaswhenusingthird-

orderstatistics(0.873). Also note that the networks we

trainedwith small initial weightsin Simulation2, which

clearly failed to learnthe task,neverthelessobtainedco-

sinescoresof 0.604.Thus,Joyce’s networksmaynot, in

fact,have masteredthe tasksufficiently to make a mean-

ingful comparisonbetweenthetrainingregimes.

Certainly there are situationsin which starting with

simplified inputs is necessaryfor effective learningin a

recurrentnetwork. For example,Bengio,Simard& Fras-

coni(1994,seealsoLin, Horne& Giles,1996)reportsuch

resultsfor tasksrequiringa network to learncontingen-

cies which span10–60entirely unrelatedinputs. Such

tasksare, however, quite unlike the learningof natural

language.Similarly, in anextensionof Simulation2, we

introduceda languagein which absolutelyno constraints

existedbetweenanounandits relativeclause.In thiscase,

bothstartingsmallandstartinglargewereequallyeffec-

tive. We alsocreateda final corpusinvolving no simple

sentences.At this point, we did find a significantadvan-

tagein startingsmallon thelanguagewith no constraints

on therelative clauses.Thus,startingwith simplifiedin-

putsis indeedadvantageousattimes,thoughwearguethat

thisadvantagedisappearsasanartificial languageis made

to bemorelikenaturallanguage.

5.2 Learningin recurrentnetworks

Theintuition behindtheimportanceof startingwith prop-

erly chosensimplified inputsis that it helpsthe network

to focusimmediatelyon themorebasic,local properties

of the language,suchas lexical syntacticcategoriesand

simplenoun-verbdependencies.Oncethesearelearned,

thenetwork canmoreeasilyprogressto hardersentences

andfurtherdiscoveriescanbebasedon theseearlierrep-

resentations.

Our simulationresultsindicate,however, thatsuchex-

ternalmanipulationof thetrainingcorpusis unnecessary

for effectivelanguagelearning,givenappropriatetraining

parameters.Thereason,webelieve,is thatrecurrentcon-

nectionistnetworksalreadyhave an inherenttendency to

extractsimpleregularitiesfirst. A network doesnotbegin

with fully formed representationsand memory; it must

learnto representandrememberusefulinformationunder

thepressureof performingparticulartasks,suchasword

prediction. As a simplerecurrentnetwork learnsto rep-

resentinformationaboutan input over the hiddenunits,

that informationthenbecomesavailableascontext when

processingthenext input. If this context providesimpor-

tant constraintson the predictiongeneratedby the sec-

ondinput,therelevantaspectsof thefirst inputwill bere-

representedoverthehiddenunitsand,thus,beavailableas

context for thethird input,andsoon. In thisway, thenet-

work first learnsshort-rangedependencies,startingwith

simpleword transitionprobabilitiesfor which no deeper

context is needed.At thisstage,thelong-rangeconstraints

effectively amountto noisewhich is averagedout across

a large numberof sentences.As the short-dependencies

are learned,the relevant information becomesavailable

for learning longer-distancedependencies.Very long-

distancedependencies,suchas grammaticalconstraints

acrossmultipleembeddedclauses,still presentaproblem

for thenetwork in any trainingregimen.Informationmust

be maintainedacrossthe interveningsequenceto allow

thenetwork to pick up on sucha dependency. However,

theremustbepressureto maintainthatinformationor the

hiddenrepresentationswill encodemorelocally relevant

information.Long-distancedependenciesaredifficult be-

causethenetwork will tendto discardinformationabout
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theinitial cuebeforeit becomesuseful.Addingsemantic

dependenciesto embeddedclausesaidslearningbecause

thenetwork thenhasanincentiveto continueto represent

themainnoun,notjustfor thepredictionof themainverb,

but for thepredictionof someof the interveningmaterial

aswell (seealsoCleeremansetal., 1989).9

It might bethoughtthatstartingwith simplified inputs

would facilitatetheacquisitionof the local dependencies

so that learningcould progressmore rapidly and effec-

tively to handlingthe longer-rangedependencies.There

is, however, a costto alteringthe network’s training en-

vironmentin this way. If thenetwork is exposedonly to

simplifiedinput,it maydeveloprepresentationswhichare

overly specializedfor capturingonly local dependencies.

It then becomesdifficult for the network to restructure

theserepresentationswhenconfrontedwith harderprob-

lemswhosedependenciesarenotrestrictedto thosein the

simplified input. In essence,the network is learningin

anenvironmentwith a nonstationaryprobabilitydistribu-

tion over inputs. In extremeform, suchnonstationarity

canleadto so-calledcatastrophic interference, in which

trainingexclusivelyonanew taskcandramaticallyimpair

performanceonapreviouslylearnedtaskthatis similar to

but inconsistentwith thenew task(see,e.g.,McClelland,

McNaughton,& O’Reilly, 1995; McCloskey & Cohen,

1989;Ratcliff, 1990).A closelyrelatedphenomenonhas

beenproposedby Marchman(1993)to accountfor critical

periodeffectsin the impactof earlybraindamageon the

acquisitionof English inflectionalmorphology. March-

man found that the longer a connectionistsystemwas

trainedon the taskof generatingthe pasttenseof verbs,

thepoorerit wasat recoveringfrom damage.This effect

wasexplainedin termsof thedegreeof entrenchmentof

learnedrepresentations:As representationsbecomemore

9It shouldbepointedout thatthebiastowardslearningshort-before
long-rangedependenciesis not specificto simple recurrentnetworks;
fully recurrentnetworksalsoexhibit thisbias.In thelattercase,learning
long-rangedependenciesis functionallyequivalentto learninganinput-
output relationshipacrossa larger numberof intermediateprocessing
layers(Rumelhartet al., 1986), which is more difficult than learning
acrossfewer layers(seeBengioetal., 1994;Lin et al.,1996).

committedto a particularsolutionwithin the premorbid

system,they becomelessable to adaptto relearninga

new solution after damage. More recently, McClelland

(in press)andThomas& McClelland (1997)have used

entrenchment-likeeffectswithin aKohonennetwork (Ko-

honen,1984)to accountfor theapparentinability of non-

native speakersof a languageto acquirenative-level per-

formancein phonologicalskills (see,e.g.,Logan,Lively,

& Pisoni,1991),andwhy only aparticulartypeof retrain-

ing regimenmay prove effective (seealsoMerzenichet

al., 1996;Tallal et al., 1996).Thus,therearea numberof

demonstrationsthatconnectionistnetworksmaynot learn

aseffectively whentheir training environmentis altered

significantly, asis thecasein theincrementaltrainingpro-

cedureemployedby Elman(1991).

Periodicallydisruptinga network’smemoryduringthe

earlystagesof learninghasrelatively little effect because

only very local informationis lost, andthis information

would have influencedthe processingof only the next

word or two in any case.As thenetwork developsin its

ability to representanduseinformationacrosslongertime

spans,thememoryis interferedwith less,againleadingto

minimal impacton learning.Therefore,thismanipulation

tendsneitherto helpnorhinderlearning.

Therehasbeenmuch debateon the extent to which

children experience syntactically simplified language

(see,e.g., Richards,1994; Snow, 1994, 1995, for dis-

cussion). While child-directedspeechis undoubtedly

marked by characteristicprosodicpatterns,thereis also

evidencethat it tendsto consistof relatively short,well-

formedutterancesandto have fewer complex sentences

and subordinateclauses(Newport, Gleitman, & Gleit-

man, 1977; seealso Pine, 1994). The study by New-

port and colleaguesis instructive here,as it is often in-

terpretedasproviding evidencethatchild-directedspeech

is not syntacticallysimplified. Indeed,theseresearchers

foundno indicationthatmotherscarefullytunetheir syn-

tax to the current level of the child or that aspectsof

mothers’speechstyleshave a discernibleeffect on the
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child’s learning. Nonetheless,it was clear that child-

directedutterances,averaging4.2 words,werequite un-

like adult-directedutterances,averaging11.9words. Al-

thoughchild-directedspeechincludedfrequentdeletions

andotherformsthatarenot handledeasilyby traditional

transformationalgrammars,whetheror not theseserveas

complexitiesto thechild is debatable.

If children do, in fact, experiencesimplified syntax,

it might seemas if our findings suggestthat suchsim-

plificationsactually impedechildren’s languageacquisi-

tion. We do not, however, believe this to be the case.

We have only beenconsideringtheacquisitionof syntac-

tic structure(with somesemanticconstraints),which is

just a smallpartof theoverall languagelearningprocess.

Amongotherthings,thechild mustalsolearnthemean-

ings of words,phrases,andlongerutterancesin the lan-

guage. This processis certainly facilitatedby exposing

the child to simpleutteranceswith simple,well-defined

meanings.We supportNewport andcolleagues’conclu-

sionthattheform of child-directedspeechis governedby

a desireto communicatewith the child andnot to teach

syntax. However, we would predictthat languageacqui-

sitionwouldultimatelybehinderedif particularsyntactic

or morphologicalconstructionswere avoided altogether

in child-directedspeech.

To this point, our simulation resultshave served to

broadentheapplicabilityof connectionistnetworksto lan-

guageacquisitionby callinginto questiontheneedfor ad-

ditional,maturation-basedconstraints.In this respect,our

conclusionscontrastwith thoseof Elman (1991,1993).

At a more generallevel, however, we are in complete

agreementwith Elman(andmany others;seeSeidenberg,

1997,Seidenberg & MacDonald,in press)in adoptinga

statisticalapproachto languageacquisition. That is, we

believe that languagelearningdependscritically on the

frequencywith whichformsoccurin thelanguageandnot

simply on whetheror not they occurat all. As discussed

in theIntroduction,thisapproachis basedonassumptions

aboutthe natureof languagethat arefundamentallydif-

ferentfrom thosetraditionallyadoptedwithin linguistics.

It is thusimportantto considercarefully the relationship

betweenour work and alternative proposalsconcerning

learnabilityandtheroleof negativeevidence.

5.3 Learnability

At thecoreof Gold’s (1967)resultsis a proof thatno in-

terestingclassesof languagesare learnablefrom a text

consistingof only valid sentencesif the text is generated

by thepowerful classof recursivefunctions,whichareall

functionsthatcanbecomputedby aTuringmachine.The

reasonis essentiallythat the generatingfunction hasthe

power to confusethelearnerindefinitely. Pastexperience

tells thelearnerrelatively little aboutthefutureproperties

of thetext becauseatany point thetext couldchangedra-

matically. Gold’sresulthasbeentakenasevidencefor the

impossibilityof languagelearningwithout strongercon-

straintson thelearnerandtheclassof possiblelanguages.

However, anotherof Gold’sresultsis generallyignored:

If thetext is generatedby only a primitiverecursive func-

tion, evenverypowerful languageclassesarelearnable.10

AsGold(1967)putsit, “theprimitiverecursivealgorithms

area specialclassof algorithmswhich arenot generalin

the senseof Turing machines,but aregeneralenoughto

includeall algorithmsnormallyconstructed”(p. 474;see

Hopcroft& Ullmanp. 175for adefinitionof primitivere-

cursive). This positive resultmakesit clearthat relaxing

thestrongassumptionthattextsaregeneratedby fully re-

cursive functionsmay alleviate the learnabilityproblem.

Along theselines, Gold (1967) suggestedthat learning

maybepossiblegiven“somereasonableprobabilisticas-

sumptionconcerningthegenerationof text” (p. 461).

Indeed,not long after Gold’s resultswere published,

Horning(1969)showedthatstochasticcontext-freegram-

marsare learnablewith arbitrarily high probability from

10It shouldbepointedout that this positive resultappliesonly to the
ability to acceptalanguageratherthanto decidethelanguage.Deciding
a languageindicatesthe ability to judge, in finite time, the grammati-
cality of any sentence,whereasacceptinga languagerequiresonly the
ability to say“yes” in finite time if a sentenceis grammatical;an ac-
ceptermightnever respondif givenanungrammaticalsentence.
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only positive examples.Angluin (1988)alsoshowedthat

a fairly weakcomputabilityrestriction,that the distribu-

tions usedto generatethe text are drawn from a “uni-

formly approximatelycomputable”sequenceof distribu-

tions,allow thelearnabilityof recursivelyenumerablesets

(seealsoOsherson,Stob,& Weinstein,1986).Kapurand

Bilardi (1992)proved a similar learnability resultunder

the assumptionthat the learnerhassomerathergeneral

prior informationaboutthe input distribution. An inter-

estingaspectof this modelis thatthelearningis not con-

sideredto be the ability to approximatethe distribution

producingthe text but actuallylearningwhich sentences

arepart of the languageandwhich arenot in the tradi-

tional sense.It is not clearwhetherAngluin’s formalism

or KapurandBilardi’s formalismis moreappropriatefor

thecaseof naturallanguage.In somesenseit is a matter

of whetheroneviewsperformanceorcompetence,respec-

tively, asprimary.

Onereactionto theseresultsis to arguethat a child’s

languageexperiencecannotbe modeledby a stochastic

process.For example,Miller andChomsky (1963)argued

thatk-limited Markov sourceswerepoor languagemod-

els.Notethatthis is preciselythesamepoint thatwehave

madeconcerningthe inadequacy of using an empirical

modelto evaluatenetwork performance.It is important,

however, not to rejecta statisticalapproachto language

basedon the inadequacy of a specific,overly simplesta-

tistical model. In fact,mostempiricalwork on language

relieson theassumptionthatlanguagecanbemodeledas

astatisticalobject.Wheneverresearcherscollectasample

of language(e.g.,theCHILDES database;MacWhinney,

1991;MacWhinney & Snow, 1985)andarguethatthesta-

tisticalpropertiesof thatsample,suchasthefrequency of

varioussyntacticconstructions,arein any way predictive

of futuresamples,they areassumingthat the languageis

generatedby a processthat is relatively statisticallysta-

tionary. In doingso,they are,implicitly or otherwise,op-

eratingoutsidethescopeof Gold’s theorem.

In a similar vein, variousproposalshave beenmade

for how thechild learnslanguagedespiteGold’snegative

results,including acquisitionrulessuchasthe “Unique-

nessPrinciple,” “competition,” “preemption,” “blocking,”

the “principle of contrast,” “mutual exclusivity,” andthe

“M-constraint” (seeMacWhinney, 1993;Wexler & Cul-

licover, 1980; Pinker, 1984; Marcuset al., 1992; Bow-

erman,1988). It is importantto notethattheseproposals

avoid Gold’sproblemby makingafundamentalchangein

theassumptionsof themodel.All of theacquisitionrules

arebased,in oneway or another, on someform of im-

plicit negative evidencewhich, in turn, dependson some

degreeof statisticalstationarityin language.For example,

supposethe child hascommitteda morphologicalover-

generalization,suchasusinggoed insteadof went. Rul-

ing out the incorrectform basedon the observation that

adultsdo not seemto useit, or useanotherform in its

place,is valid only if languageis producedaccordingto a

reasonablystationaryprobability distribution over forms

or sentences.Oneway to seethis is to considera verb

like dive with multiple commonpast-tenseforms(dived

anddove). Marcusetal. (1992,p.9) arguethatbothpast-

tenseforms would be treatedas irregular. The problem

is that the blocking principle eliminatesdived asa past

tenseof dive if dove occursfirst; moreover, dived may

bewithheldarbitrarily long underGold’sassumptions.If

dived is eventuallyacceptedasanalternative form, then

by thesametoken,goed cannotberuledout because,as

far asthe learnerknows, go maybe like dive andgoed

is just beingwithheld. By contrast,if thelanguageis rel-

atively stationary, thenif thelearneroftenhearswent and

neverhearsgoed, it is reasonableto assumethatgo is not

likedive andgoed canberuledout (or, in a probabilistic

framework,madeincreasinglyunlikely).

Thus,our suggestionthat implicit negative evidenceis

critical to languageacquisitionis largely in agreement

with many standardmodels. Indeed,prediction inher-

ently implementsa form of competitionbecauseit in-

volves representingsomealternatives at the expenseof

others.Wherewediffer is that,in ourview, adequatesen-
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sitivity to thestructureof languageinput canobviatethe

needfor detailedinnatelinguistic constraints. Whether

a “uniquenessrule” mustbeexplicitly definedaspartof

our innate language-acquisitionconstraints,or whether,

aswe would argue,it emergesfrom moregeneralinfor-

mation processingmechanisms,is a matter for debate.

In either case,however, we must acknowledgethat we

areno longerwithin theframework of Gold’s theoremor

thestatistics-freeassumptionsof traditionalapproachesto

linguistics.

It might be arguedthat our networks are not general

learningmechanismsbut that their success,like that of

humans,is really dueto innateconstraints.Thenetworks

do, of course,have constraintsbuilt into them,including

thenumberof units,theconnectivity pattern,theinputand

outputrepresentations,thelearningmechanism,thedistri-

bution of initial weights,andmany otherfactors.Indeed,

thereis no suchthing asa completelyunbiasedlearning

algorithm. At issueis whetherthe constraintsneededto

learn languageare consistentacrossmany forms of in-

formationprocessingin the brain or whetherthey apply

only to language,andwhethertheconstraintsaffect lan-

guageprocessingvery generallyor whetherthey arespe-

cific to particularaspectsof language(seealsoMarcus,

et al., 1992).Critically, noneof theconstraintsembodied

in the networks arespecificallylinguistic—given appro-

priateinput, the identicalnetworkscouldhave learnedto

performany of awiderangeof tasks.In fact,theonly crit-

ical sensitivity to parametersettingsthatwediscovered—

avoiding very small initial randomweights—arisesfrom

very generalcharacteristicsof learningandprocessingin

connectionistnetworks andappliesequallywell in non-

linguisticdomains.

Theseconstraintsdiffer markedly from the very spe-

cific rulesthat someproponentsof innateconstraintson

languagesuggestareembeddedin thegenome.Suchrules

typically make referenceto explicit syntacticandlexical

abstractionsassumedto beinvolvedin languageprocess-

ing. As Crainnotes,“linguistsgenerallyfind it reasonable

to supposethat constraintsare innate, domain-specific

properties”(p. 598). For example,Marcuset al. (1992)

proposetheblockingprincipleas,“a principlespecifically

governingtherelationsamongthe inflectedversionsof a

givenstem,” (p. 9) in contrastto a moregeneralmecha-

nismthat is sensitive to the frequency with which mean-

ingsmapto particularforms in the input. Along similar

lines,Gropenetal. (1991)posetheuniversalobjectaffect-

ednesslinking rule, by which,“An argumentis encodable

asthedirectobjectof a verb if its referentis specifiedas

beingaffectedin a specificway in thesemanticrepresen-

tationof theverb” (p. 118),andCrain(1991)proposesa

rule thatcontractionmaynot occuracrossa traceleft be-

hind by Wh-movement.Thepoint hereis simply to em-

phasizethat suchlanguage-specificconstraintsarequal-

itatively distinct from the more generalparametersthat

control,for instance,theflexibility of weightsin a neural

network.

5.4 Prediction as a source of negative evi-
dence

Robust negative resultslike Gold’s areuniversalin that

they prove that no learning algorithm is guaranteedto

succeedgiven the statedassumptions.By contrast,pos-

itive learnabilityresults,suchasthoseobtainedby Horn-

ing (1969)andAngluin (1988),mustbe interpretedwith

morecautionbecausethey show only that somesystem

canlearnthetask. In particular, Horning’sandAngluin’s

methodsrely ontheability of thelearnerto explicitly enu-

merateandtestall possiblegrammarsandrely on essen-

tially unboundedresources.It seemsunlikely that such

assumptionshold for the languageacquisitionprocesses

of thehumancognitive system.The importanceof these

results,however, is that they demonstratethat learningis

possiblein the absenceof strongconstraintson the lan-

guageandthelearner, andthatakey factorin overcoming

the “logical problem” of languageacquisition(Baker &

McCarthy, 1981)is theuseof implicit negativeevidence.

In orderto be relevant to humanlanguagelearning,it
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must be possiblefor the limited computationalmecha-

nismsof the cognitive systemto take advantageof this

information. We wish to advancethehypothesisthat the

principalmeansby whichthecognitivesystemmakesuse

of implicit negativeevidenceis throughtheformationand

evaluationof online, implicit predictions(seeJordan&

Rumelhart,1992;McClelland,1994,for discussion).The

typeof predictionswearehypothesizingneednotbecon-

sciouslyaccessible,nor mustpredictionsbeover a small

setof alternatives. Nor, for that matter, is predictionre-

strictedto a probability distribution over localist lexical

units,asin ournetwork model—itis likely thatlinguistic

predictionsoccuronmany levelsof representation,across

phonemicfeatures,acrosssemanticandsyntacticfeatures

of words, andacrosssemanticandsyntacticfeaturesof

entirephrases.11

On our view, predictioninvolvestheoperationof stan-

dardprocessingmechanismswhich embodythe general

computationalprinciple, in interpretinglinguistic utter-

ances,of goingasfar beyondtheliteral input aspossible

in orderto facilitatesubsequentprocessing(seeMcClel-

land,St.John,& Taraban,1989).A clear, if simplified,in-

stantiationof thisprincipleis theCohortmodelof spoken

word recognition(Marslen-Wilson,1987),in whichcom-

petingwordsareeliminatedfrom contentionas soonas

informationis receivedwhich is inconsistentwith them.

A natural(and more robust) extensionof this approach

wouldbetoproposethatthesystemmaintainsandupdates

in real time a probabilitydistribution over wordsreflect-

ing the likelihoodthateachword is theonebeingheard.

Suchadistributionis exactlywhatwouldemergefrom at-

temptingto predictthecurrentword asearlyaspossible.

11It might seemthat predictioncanoperateonly over localist repre-
sentations,but this is not necessarilytrue. A predictionover distributed
representationscantake theform of aweightedaverageof therepresen-
tationsfor individual items,with theweightingdeterminedby theposte-
rior probabilitydistributionovertheitems.Althoughsuchablendedpat-
ternwould bequitedifferentthantherepresentationfor any of thecon-
tributingitems,it wouldnonethelessbecloserto eachof thecontributing
items(asafunctionof its weighting)thanto virtually any unrelatedpat-
tern (Hinton & Shallice,1991,Appendix1). Sucha predictionwould
thusprovideeffective context for processingsubsequentinput (see,e.g.,
Kawamoto,Farrar, & Kello, 1994).

More generally, accuratepredictionneednot andshould

notbebasedontheprecedingsurfaceformsalone,asin a

k-limited Markov source.In orderto make accuratepre-

dictionsandto generalizeto novel combinationsof sur-

faceforms,thesystemmustlearnto extractandrepresent

theunderlyinghigher-orderstructureof its environment.

Fodor andCrain (1987)consideredthe useof predic-

tion involving syntacticstructures,but arguedthat it is

problematicon two accounts.First, they contendedthat

“it assumesthat a learnerengagesin a vast amountof

labor ‘on the side’, that he doesnot stopwork whenhe

hasconstructeda set of rules that generateall the con-

structionshehearsanduses”(p. 51). Note,however, that

learningbasedonprediction,onouraccount,is anon-line

procedurethat is not “on theside” but aninherentpartof

languageprocessing.It neednot rely onmemorizationof

entireutterances,noronexplicit compilationof frequency

countsover hypothesizedrulesor structures,nor on dis-

cretedecisionsaboutthe grammaticalityof thosestruc-

tures.As in thecurrentsetof simulations,feedbackcanbe

immediate,canoperateon a word-by-wordor morefine-

grainedbasis,andcanbeincorporatedin agradedfashion

into thesystem’scurrent,workinggrammar. It is truethat

predictionmechanismsmaynot stopwork whenonehas

constructeda setof rules that generateall the construc-

tions onehearsanduses,but that is a desirablefeature.

Algorithms that learn only from failure (e.g., Berwick,

1987) have beencriticized becausethey fail to account

for changesthat are observed after childrenare parsing

sentencescompetently(Bowerman,1987). By contrast,

learningvia predictionappliesto bothsuccessesandfail-

ures,becausethereareno completesuccessesunlessthe

next eventis predictedwith absolutecertainty;everypre-

diction is likely to beapproximateto somedegree.

FodorandCrain’s (1987)secondargumentagainstpre-

diction is thatthelearnermustknow how to generalizeto

appropriatedifferentconstructions.This is indeedanim-

portantpoint. However, if predictionsaregeneratedbased

on therepresentationswhich form thelearner’sgrammar,
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feedbackwill generalizeto theextentthattheserepresen-

tationsgeneralizeover structures. Functionallysimilar

structureswill receive similar feedbackandwill begiven

similar representations,allowing generalizationof subse-

quentfeedback. In contrast,similar representationsfor

different structuresare pulled apartby competingfeed-

back. Inferring the grammarof a natural languagere-

quiresthe ability to form broadgeneralizationswithout

sacrificingsensitivity to subtledistinctionsandcontradic-

tions. This kind of processingmay not be amenableto

a cleandescriptionin the traditionalsense,but it is what

connectionistlearningsystemsexcelat.

5.5 Lateexposureandsecondlanguages

Elman’s (1991,1993)computationalfindingsof the im-

portanceof startingsmall in languageacquisitionhave

beeninfluential in part becausethey seemedto corrob-

orateempiricalobservationsthat languageacquisitionis

ultimately moresuccessfulthe earlier in life it is begun

(seeLong, 1990). While older learnersof eithera first

or a secondlanguageshow initially fasteracquisition,

they tend to plateauat lower overall levels of achieve-

mentthando youngerlearners.The importanceof early

languageexposurehasbeencited asan argumentin fa-

vor of eitheraninnatelanguageacquisitiondevice which

operatesselectively during childhoodor, at least,genet-

ically programmedmaturationof the brain which facili-

tateslanguagelearningin childhood(Johnson& Newport,

1989;Newport, 1990;Goldowsky & Newport, 1993). It

hasbeenarguedthat the fact that late first- or second-

languagelearnersdo not reachfull fluency is strongev-

idence for “maturationally scheduledlanguage-specific

learningabilities” (Long, 1990,p. 259, emphasisin the

original).

We would argue,however, that thedataregardinglate

languageexposurecan be explained by principles of

learning in connectionistnetworks without recourseto

maturationalchangesor innatedevices.Specifically, adult

learnersmay not normally achieve fluency in a second

languagebecausetheir internalrepresentationshavebeen

largely committedto solvingotherproblems—including,

in particular, comprehensionandproductionof their na-

tivelanguage(seeFlege,1992;Flege,Munro,& MacKay,

1995).By contrast,thechild ultimatelyachievesa higher

level of performancebecausehis or herresourcesareini-

tially uncommitted.This idea,whichaccordswith Quartz

andSejnowski’s (1996)theoryof neural constructivism,

is certainlynotanew one,but is onethatseemsto remain

largely ignored(althoughseeMarchman,1993;McClel-

land,in press).Onthisview, it seemsunlikely thatlimita-

tionsin achild’scognitiveabilitiesareof significantbene-

fit in languageacquisition.While adults’greatermemory

andanalyticalabilitiesleadto fasterinitial learning,these

propertiesneednot be responsiblefor the lower asymp-

totic level of performanceachieved,relative to children.

Along similar lines, the detrimental impact of de-

layedacquisitionof a first languagemaynot implicatea

language-specificsystemthat hasshutdown. Rather, it

may be that, in the absenceof linguistic input, thosear-

easof thebrainwhich normallybecomeinvolvedin lan-

guagemayhavebeenrecruitedto performotherfunctions

(see,e.g.,Merzenich& Jenkins,1995, for relevant evi-

denceanddiscussion).While it is still sensibleto refer

to a critical or sensitive periodfor theacquisitionof lan-

guage,in the sensethat it is importantto start learning

early, the existenceof a critical periodneednot connote

specificlanguage-acquisitiondevicesor geneticallypre-

scribedmaturationalschedules.

Indeed,similarcritical periodsexist for learningto play

tennisor amusicalinstrument.Rarelyif everdoesanindi-

vidual attainmasterfulabilitiesat eitherof thesepursuits

unlessthey begin at an early age. And certainly in the

caseof learningthe pianoor violin, remarkableabilities

canbeachievedby latechildhoodandarethusnotsimply

theresultof themany yearsof practiceaffordedto those

who startearly. Onemight addthatno speciesotherthan

humansis capableof learningtennisor theviolin. Never-
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theless,wewouldnotsupposethatlearningtheseabilities

dependsupondomain-specificinnatemechanismsor con-

straints.

While generalconnectionistprinciplesmayexplain the

overall patternof resultsin late languagelearning,con-

siderablework is still neededto demonstratethatthis ap-

proachis sufficient to explain the rangeof relevant de-

tailedfindings.For example,it appearsthatvocabulary is

moreeasilyacquiredthanmorphologyor syntax,andthat

secondlanguagelearnershavevariablesuccessin master-

ing differentsyntacticrules(Johnson& Newport, 1989).

In futurework, we intendto developsimulationsthat in-

cludecomprehensionandproductionof morenaturalistic

languages,in orderto extendour approachto addressthe

empirical issuesin late second-languagelearningandto

allow us to modela wider rangeof aspectsof language

acquisitionmoredirectly.

6 Conclusion

If weaccepttheassumptionsof Gold’smodel(1967),his

theoremsseemto imply thatnaturallanguageshouldnot

be learnable. Although explicit negative evidencemay

sometimesbeavailableto thechild in a form that is suc-

cessfullyutilized, suchfeedbackappearsinsufficient by

itself to overcomeGold’s problem.Therewould thusap-

pearto betwo remainingviablesolutions,which bothin-

volve alteringthe assumptionsof the model: Either nat-

ural languagesaredrawn from a highly restrictedsetand

the propertiesof the possiblenatural languagesare en-

codedgenetically, or thereis a restrictionon the set of

possibletexts—in particular, to thosethat are produced

accordingto reasonablystableprobabilitydistributions.

In their mostextremeforms,thesesolutionsaccordei-

ther with the hypothesisthat languageis learnedby a

highly constrainedmechanismwith little relianceon dis-

tributionalpropertiesof the input, or with thehypothesis

that languageis learnableby a relatively generalmecha-

nism that reliesheavily on statisticalevidencein the in-

put. We believe that the latterhypothesisis preferableas

astartingpoint in thatit embodiesweaker initial assump-

tions,andthat its investigationwill leadmorequickly to

an understandingof cognition and the learningmecha-

nismsof thebrainmoregenerally. We have alreadyseen

that relianceon implicit negative evidenceis difficult to

avoid in either framework, thus bringing them perhaps

thatmuchcloser.

Adopting a statisticallearningapproachraisesthe is-

sueof how a cognitively and neurallyplausiblemecha-

nismmight actuallyacquiretherelevantknowledgefrom

appropriatelystructuredlinguistic input. Following El-

man(1991,1993),we have shown that simplerecurrent

connectionistnetworkscanlearnthestructureof pseudo-

naturallanguagesbasedon implicit negativeevidencede-

rivedfrom performingawordpredictiontaskin astochas-

tic environment. Unlike Elman,however, we found that

learningwas most effective when the network was ex-

posedto the full complexity of the languagethroughout

training, and that the advantageof this approachover

“startingsmall” increasedasthelanguagewasmademore

English-likeby introducingsemanticconstraints.

Onemajor limitation of the task in our simulationsis

that the networks are not actually comprehending,only

learningthesyntaxof the language.As such,thereis no

context or meaningto the utterances.This is not repre-

sentativeof whatis requiredfor languageacquisition,but

it may actually make the subtaskof learningthe gram-

maticalstructureof the languagemoredifficult. Because

context, whetherit is visual or verbal,greatlyconstrains

thesetof likely utterances,its additioncouldsignificantly

facilitatelearningof thegrammar. Without context, it is

difficult to determinewhetherpredictionerrorsare due

to inadequatesyntacticknowledgeor inadequateseman-

tic knowledge.Familiar contexts clarify the intendedse-

mantics,helpingthesystemovercomethis bootstrapping

problem. We leave it to future researchto determine

whetherthe simulationresultswe have obtainedwith a

mostlysyntacticpredictiontaskgeneralizeto morenatu-
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ral comprehensiontasksandmorerealisticlanguages.

Despitetheir simplicity, our simulationscall into ques-

tion theproposalthatlimited cognitiveresourcesarenec-

essary, or evenbeneficial,for languageacquisition.How-

ever, perhapsthemostimportantaspectof Elman’s work

is reinforced by ours—thatconnectionistsystemscan

learnthestructureof a languagein theabsenceof explicit

negativeevidence.We claim thatpredictionis theprinci-

pal mechanismby which the humancognitive systemis

ableto take advantageof implicit negativeevidence.Our

work suggeststhat learningthe structureof naturallan-

guagemaybepossibledespitea lack of explicit negative

feedback,despiteexperiencingunsimplifiedgrammatical

structures,andin theabsenceof detailed,innatelanguage-

acquisitionmechanisms.
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