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Abstract

Predictionis believed to be an importantcomponenbf cog-
nition, particularlyin the processingf naturallanguage. It

haslong beenacceptedhatrecurrentneuralnetworksarebest
ableto learn predictiontaskswhentrainedon simple exam-
ples before incrementallyproceedingto more comple sen-
tencesFurthermorethe counterintuitive suggestiorhasbeen
madethatnetworksand,by implication,humansnaybeaided
during learningby limited cognitive resourcegEIman, 1991
Caognition). The currentwork reportsevidencethat starting
with simplifiedinputsis notnecessarin trainingrecurrennet-
worksto learnpseudo-naturdhnguagesin addition,delayed
introductionof complex examplesis often an impedimentto

learning.We suggesthatspeciakeachingnethodsandlimited

cognitive resourcesluring developmentmay be of no benefit
for learningthe structureof naturallanguage.

I ntroduction

The questionof how humansareableto learna naturallan-
guagadespiteheapparentack of adequatéeedbackaslong
beena perpleing one. Baker (1979) arguedthat children
do not receve a sufficient amountof negative evidenceto
properlyinfer the grammaticaktructureof language.Com-
putationaltheorysuggestshatthisis indeedproblematicas
Gold (1967) hasshavn that, without negative examples,no
superfiniteclassof languagess learnable.The classof reg-
ularlanguagess superfinite asarecontext-free andcontext-
sensitve languagesTherefore unlesshe setof possiblenat-
ural languagess highly restricted,t would appearthatsuch
languagesare not learnablefrom positve examples. How,
then, are humansable to learnlanguage?Must we rely on
extensie innateknowledge?

In fact, a frequentlyoverlooked sourceof informationis
the statisticalstructureof naturallanguage. Languagepro-
duction can be viewed as a stochastigprocess—somsen-
tencesand grammaticalconstructionsare more likely than
others. The learnercan usethesestatisticalpropertiesas a
form of implicit negative evidence.Indeed stochasticregular
languagesndstochasticontext-freelanguagesare learnable
usingonly positive data(Angluin, 1988).Onewaythelearner
cantake advantageof thesestatisticss by attemptingto pre-
dict the next word in an obsenred sentence.By comparing
thesepredictionsto the actually occurringnext word, feed-
backis immediateand negative evidencederivesfrom con-
sistentlyincorrectpredictions. Indeed,a numberof studies

have found empirical evidencethat humansdo generatesx-
pectationsn processingaturallanguageandthattheseplay
anactiverolein comprehensiofNeisser1967;Kutas& Hill-
yard,1980;McClelland& O’Regan,1981).

Elman (1991, 1993) provided an explicit formulation of
how a learningsystemmight infer the grammaticaktructure
of a languageon the basisof performinga word prediction
task. He traineda simple recurrentnetwork to predictthe
next word in sentencegeneratedy an English-like artifi-
cialgrammamwith numberagreementyariableverbargument
structure andembeddedlauses.He foundthatthe network
wasableto learnthetaskbut only if thetrainingregimenor
the network itself wasin someway restrictedn its comple-
ity initially (i.e.,it “startedsmall”). Specifically the network
couldlearnthetaskeitherwhenit wastrainedfirst on simple
sentencegwithout embeddingsiand only later on a gradu-
ally increasingproportionof complex sentencespr whenit
wastrainedon sentenceslravn from the full compleity of
the languagebut with aninitially faulty memoryfor context
which graduallyimproved over the courseof training. By
contrastwhenthe network wasgivenfully accuratenemory
andtrainedon the full complex grammarfrom the outset,it
failedto learnthetask.Elmansuggestethatthelimited cog-
nitive resource®f thechild may, paradoxicallybenecessary
for effective languageacquisition,in accordancevith New-
port’s (1990)“lessis more” proposal.

This paperreportson attemptso replicateof someof El-
man’sfindingsusingsimilar networksbut moresophisticated
languageslin contrastwith his results,it wasfoundthatnet-
workswereableto learnquite readily evenwhenconfronted
with the full compleity of languagefrom the start. Under
no circumstanceslid startingwith simplesentenceseliably
aid learningand, in mostconditions,it provedto be a hin-
drance. Furthermorestartingwith the full languagewas of
greaterbenefitwhenthe grammarwas mademore English-
like by including statisticalconstraintbetweermainclauses
andembeddingdbasedon lexical semantics.We arguethat,
in the performanceof realistictasksincluding word predic-
tionin naturallanguagerecurrennetworksinherentlyextract
simpleregularitiesbeforeprogressingo morecomple struc-
tures,andno externalmanipulatiorof thetrainingregimenor
internalmemoryis requiredto inducethis property Thus,the
work calls into questionsupportfor the claim that initially
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N — boy| girl| cat| dog| Mary| John |
boys | girls| cats| dogs

VI — walks| bites| eats| barks| sings |
walk | bite | eat| bark| sing

VT — chases| feeds| walks| eats| bites |
chase | feed| walk| eat]| bite

Table 1: The underlying contect-free grammar Transition
probabilitiesare specifiedand additionalconstraintsare ap-
plied ontop of this framework.

limited cognitive resource®r othermaturationakonstraints
arerequiredfor effective languageacquisition.

Simulation M ethods

We begin by describingthe grammarausedin both ElIman’s

work andthe currentstudy We then describethe corpora
generatedrom thesegrammarsthearchitecturef thesimple
recurrentnetworks trainedon the corpora,and the methods
usedin theirtraining.

Grammars

Thelanguagesisedin thiswork aresimilarin basicstructure
to thatusedby Elman(1991),consistingof simplesentences
with the possibility of relative-clausemodificationof nouns.
Elman’s grammarinvolved 10 nounsand 12 verbs,plus the
relative pronounwho andan end-of-sentencenarker. Four
of the nounsweretransitive, four intransitve, and four op-
tionally transitve. Six of the nounsandsix of the verbswere
singular the othersplural. Numberagreementvasenforced
betweemounsandverbswhereappropriate Finally, two of
thenounswereproperandcould not be modified.

This languageis of interestbecausedt forcesa predic-
tion network to form representationef potentially complex
syntacticstructuresand to rememberinformation, such as
whetherthe nounwassingularor plural, acrosdong embed-
dings. Elman’s grammay however, was essentiallypurely
syntactic,involving no form of semantics.Thus, the singu-
lar verbsall actedin the sameway; likewise for the setsof
plural verbsandsingularandplural nouns.Naturallanguage
is clearly far morecomplex andthe additionof semantiae-
lationshipsoughtto have a profoundeffect on the mannerin
which alanguages processed.

The underlying frameawork of the grammarusedin this
study shavn in Table1, is nearlyidenticalto that designed
by Elman. They differ only in thatthe currentgrammaradds
onepair of mixedtransitvity verbsandthatit allows relative
clausego modify propernouns.However, severaladditional
constraintsare appliedon top of this framework. Primary
amongthese,asidefrom numberagreementis that individ-
ual nounscanengageonly in certainactionsandthattransi-

Verb Intransitive | Transitive Objects
Subjects Subjects | if Transitive

chase || - ary ary

feed - human animal

bite animal animal ary

walk ary human dog

eat ary animal human

bark only dog - -

sing humanor cat | - -

Table2: Semanticconstrainton verb usage.Columnsindi-
catelegal subjectnounswhenverbsare usedtransitvely or
intransitively andlegal objectnounswhentransitive.

tive verbscanoperateonly on certainobjects. For example,
arnyone can walk intransitively, but only humanscan walk
somethingelseandthe thing walked mustbe a dog. These
constraintarelistedin Table2.

Anotherrestrictionis thatpropemounscannotactonthem-
selhes.For exampleMary chases Mary wouldnotbealegal
sentenceFinally, construction®f theform Boys who walk
walk aredisalloved becausef semanticedundang. These
andtheabove constraintalwaysapplywithin themainclause
of thesentenceAsidefrom numberagreementyhichaffects
all nounsandverbs thedegreeto whichtheconstraintapply
betweena clauseandits subclauses variable. In this way
the correlationbetweera nounandits modifying phraseor
thelevel of information(abouttheidentity of thenoun)in the
phrasecanbemanipulated.

Thebasicstructureshavn in Table1 becomes stochastic
contet-free grammar(SCFG)when probabilitiesare speci-
fied for the variousproductions.Additional structuresvere
alsoaddedto allow directcontrol of the percentag®f com-
plex sentencegeneratedby the grammarand the average
numberof embeddingdn a sentence. Finally, a program
wasdevelopedwhichtakesthegrammayralongwith theaddi-
tional syntacticandsemanticonstraintsandgenerateanewn
SCFGwith the constraintsncorporatednto the contet-free
transitions.In this way, a single SCFGcanbe generatedor
eachversionof thegrammar This is convenientnot only for
generatingexamplesentencebut alsobecausd allowsusto
determinethe optimal predictionbehaior on the language.
Given the SCFGandthe sentenceontet up to the current
point, it is possibleto producethe theoreticallyoptimal pre-
diction of the next word. This predictionis in the form of a
probability distribution over the 26 wordsin the vocalulary.
Theability to generatehis prediction,andhenceto modelthe
grammayris whatwe expectthe networksto learn.

Corpora

In orderto studythe effectof varyinglevelsof informationin
embeddedlausesfive classe®f grammamereconstructed.
In classA, semanticonstraintslo notapplybetweeraclause
andits subclausegnly within aclause In classB, 25%o0f the



subclausegsespecthe semanticconstraintsin classC, 50%,
in classD, 75%,andin classk all of the subclausearecon-
strained. Therefore,in classA, which is mostlike Elman’s
grammay the contentsof a relative clauseprovide no infor-
mationaboutthenounbeingmodifiedotherthanwhetheiit is
singularor plural, whereaglassE producesentencewhich
arethemostEnglish-like.

Elman (1991) first trained his network on a corpus of
10,000sentences!5% of whichwerecomple. He reported
thatthenetwork was“unableto learnthetask”despitevarious
choicesof initial conditionsandlearningparametersThree
additional corporacontaining0%, 25%, and 50% comple
sentencewerethenconstructed Whentrainedfor 5 epochs
on eachof the corporain increasingorderof compleity, the
network “achieved a high level of performanceé. As in El-
man’s experimentfour versionsof eachclasswerecreatedn
the currentwork in orderto producelanguage®f increasing
complity. Grammardq, Ass, Asg, andArs, for example,
produced%, 25%,50%,and75%comple sentencesgespec-
tively. In addition,for eachlevel of compleity, the probabil-
ity of relative clausemodificationwasadjustedo matchthe
averagesentencéengthin Elman’s corpora.

For eachof the20 grammargfive classe®f semanticon-
straintsby four percentagesf comple« sentences)wo cor-
poraof 10,000sentenceweregeneratedynefor trainingand
theotherfor testing.Corporaof this sizearequiterepresenta-
tive of the statisticsof thefull languagdor all but thelongest
sentencesyhich arerelatively infrequent. Sentencefonger
than 16 wordswerediscardedn generatinghe corpora,but
theseweresorare(< 0.2%) thattheir lossshouldhave neg-
ligible effects. In orderto performwell, a network could not
possibly“memorize” the training corpusbut mustlearnthe
structureof thelanguage.

Network Architecture

The architectureof the simple recurrentnetwork usedboth
by Elmanandin the currentwork is illustratedin Figure1l.
The network containeds,936trainableweightsandincluded
afully connectegbrojectionfrom “context” unitswhoseacti-
vationsarecopiedfrom hiddenunitsattheprevioustime step.
The 26 inputswere encodedusing basisvectors. Oneword
waspresentedn eachtime step.Althoughthedesiredoutput
of the network is a probability distribution indicatingthe ex-
pectednext word, the target outputduring training consisted
of theactualnext word occurringin thesentence.
Thecurrentsimulationsvereperformedwith softmaxcon-
straints(Luce, 1986) which normalizethe output vectorto
asumof 1.0, asopposedo the sigmoidaloutputunits used
by Elman. ThedivergenceerrormeasurgHinton, 1989)was
usedn providing feedbacko thenetwork. Theerrorfor each
unitis givenby d(logd — logy), whered is thetamgetvalue
andy is the outputunit activation. Note thatwhenthe tar-
getis 0, this valueis by corvention0 aswell. Therefore,
erroris only injectedat the unit representinghe actualnext
word in the sentencewhich is perhapamore plausiblethan
otherfunctionswhich provide feedbaclon everywordin the

Next Word (26)

( @ P
’ ' copy
(Current Word (2@ ( Context (70) )

Figure 1. Network architecture.Eachsolid arrav representsull
connectiity betweerlayers(with numberof unitsin parentheses).
Hiddenunit statesarecopiedto correspondingontext units(dashed
arraw) aftereachwordis processed.

vocalulary. Errorswere not backpropagatethroughtime,
only throughthe currenttime step,andwerethereforealso
relatively local in time. Hiddenlayer activation wasnot re-
setbetweersentenceshowever, the end-of-sentencemarker
clearlydenotesa sentencéoundary

Experiments

For eachof thefive languageclassestwo training regimens
werecarriedout. In the comple regimen,the network was
trainedon the mostcomplex corpus(75% comple) for 25
epochswith afixedlearningrate. Thelearningratewasthen
reducedo 0.0003andthe network wastrainedfor onefinal
passthroughthe corpus.In the simpleregimen,the network
wastrainedfor five epochson eachof thefirst threecorpora
in increasingorderof compleity. It wasthentrainedon the
fourth corpusfor 10 epochsfollowedby afinal epochat the
reducedlearningrate. The final six epochsof training on
the fourth corpus(notincludedin ElIman’s design)werein-
tendedo allow performancevith thesimpleregimentoreach
asymptoteThenetwork wasevaluatedbnthetestcorpuspro-
ducedby thesamegrammarasthefinal trainingcorpus.

A wide rangeof training parameteravere searchece-
fore finding a setwhich consistentlyachieszed the bestper
formanceundernearlyall conditions.The network usedmo-
mentumdescentvith a momentunof 0.9, a learningrate of
0.004,andinitial weightssampleduniformly betweent1.0.
Softmaxoutput constraintswere appliedwith a divergence
error function. By contrast,the parameterselectedby El-
manincludedno momentuma learningrateof 0.1 annealed
to 0.06, andinitial weightsin the +£0.001range;also, soft-
max constraintswere not usedand sum-squarectrror was
employedduringtraining.

Both comple< and simpletrials wererun for eachof the
five grammarclasses.Twentyreplicationsof eachcondition
wereperformedyesultingin 200totaltrials. Althoughtheac-
tual next word occurringin the sentencesened asthe target
outputduringtraining, the network wasexpectedto produce
a distribution over all possiblewords. The target vectorsin
thetestingcorporaconsistedf the theoreticallycorrectpre-



0.14

Simple Regimen
Complex Regimen A

—

0.08 -

0.06 - i

0.04 - b

Mean Divergence Per Prediction
H
FH

0.02 |- b

0.00

A B C D E
Grammar/Taaining Corpus

Figure 2: Final divergenceerror—note that lower valuescorre-
spondto betterperformance.Meansand standarderror barswere
computedor thebest16 of 20trials.

dictiondistributionsgive thegrammarandthe sentenceip to
thatpoint. Becausehe grammarsarestochasti@andcontext-
free,theseexpectationsarequite easyto generate.

Resultsand Discussion

Figure 2 shows the meandivergenceerror per word on the
testingcorpora,averagedover the 16 trials yielding the best
performancen eachcondition. Overall, the comple train-
ing regimenyieldedbetterperformancehanthe simplereg-
imen, F(1,150)=53.8p<.001. Underno conditiondid the
simpletrainingregimenoutperfornthecomple trainingreg-
imen. Moreover, theadwantagen startingcomplex increased
with the proportion of fully constrainedrelative clauses,
F(4,150)=5.8p<.001.Thisconformswith theideathatstart-
ing smallis mosteffective whenimportantdependenciespan
uninformatve clauses. Neverthelessagainstexpectations,
startingsmallfailedto improve performancevenin classA
whererelative clauseslo notconformto semanticonstraints
imposedby the precedinghoun.

It is importantto establishhowever, thatthe network was
ableto masterthe taskto a reasonabl@egreeof proficiengy
in the comple regimen. Otherwise,it may be the casethat
noneof the networksweretruly ableto learn. Averagediver-
genceerrorwas0.074for networkstrainedon corpusAr5 and
0.100for networkstrainedon corpusE;s, comparedvith an
initial errorof 2.6. TheclassE languagesreharderbecause
semanticconstraintdorce the network to make useof more
informationin predictingthe contentsof relative clausesBy
way of anecdotakvidence,the networks appearto perform
nearly perfectlyon sentencesvith up to onerelative clause
andquitewell on sentencavith two relative clauses.

Figure3 compareghe outputof a network trainedexclu-
sively on corpusEzs with the optimal outputsfor thatgram-
mar. The behaior of the network is illustratedfor the sen-

tencesBoy who chases girls who sing walks and Dogs
who chase girls who sing walk. Note,in particularthepre-
diction of the mainverbfollowing sing. Predictionsof this
verbarenot significantlydegradedeven aftertwo embedded
clauses.The network is clearly ableto recall the numberof
the main nounandhasa basicgraspof the differentactions
allowedon dogsandhumansit is, however, still unsurethat
boys arenotallowedto bite andthatdogscannotsing. It also
did not quite learnthe rule that dogscannotwalk something
else. Otherwise,the predictionsare very closeto optimal,
includingthefactthatcatsandhumansannotbewalked.

For sentencewith threeor four clausessuchasDog who
dogs who boy who dogs bite walks bite chases cat who
Mary feeds, performancef the networks wasconsiderably
worse. To befair, however, humansare generallyunableto
parsesuchsentencesvithout multiple readings.In addition,
fewer than5% of the sentencef the mostcomplex corpora
were over nine wordslong. This wasnecessaryn orderto
matchthe averagesentence-lengthtatisticsin Elman’s cor-
pora,butit did not provide the network sufficientexposureto
suchsentence$or ary hopeof learningthem. Interestingly
the networks were only about4% worse on the testingset
comparedwith the training set, indicating that they did not
memorizethetrainingsentenceto a significantextent.

Thebestmeasuref network performanceavould appeato
be a direct comparisorwith the resultspublishedby Elman
(1991).However, thereareproblemswith this approachBe-
causeElmandid notusea standardorm stochastigrammay
it wasnotpossiblgo producehetheoreticallycorrectpredic-
tionsagainswhichto ratethemodel.Insteadempiricallyde-
rivedprobabilitieggiventhesentenceontet werecalculated.
Presumablytheseprobabilitieswere compiledover replica-
tionsin thetestingsetof theentiresentenceontet upto that
point. Unfortunatelythis type of empiricallybasedanguage
modeltendsto “memorize”the training corpus,particularly
thelong sentenceontexts which areoftenunique.

Of thenetworkstrainedexclusively on corpusArs, theone
with medianperformancevasselectedor evaluationagainst
anempiricallanguagemodeltrainedon our A5 testingcor-
pus.Elmanreportedafinal errorof 0.177for hisnetwork (us-
ing, we believe, Minkowski-1 or city-block distance) Ourse-
lectednetwork hadanerrorof 0.485againsthemodel,which
would seemto be considerablyworse. However, city-block
distances not well-suitedfor probability distributions. Bet-
ter measuresrethe meancosineof the anglebetweertarget
and outputvectors,andtheir divergence. The selectedhet-
work hadanaveragecosineof 0.864,whichis slightly better
thanthevalueof 0.852thatEImanreported.

However, comparisonof the empirically derived predic-
tionsagainsthetheoreticallyderivedpredictionswhichrep-
resentthe true desiredbehaior of the network, indicatethat
theformerareactuallyquitepoor. Whenevaluatedagainsthe
theoreticalpredictions,the empirical modelhad a meandi-
vergenceof 1.897,adistanceof 0.413,anda cosineof 0.881.
In contrastwhencomparedhgainsthe samecorrectpredic-
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word position. Valuesareaveragedover all 20 networks trainedin
eachcondition.

tions, the selectechetwork hada divergenceof 0.070,a dis-
tanceof 0.158,anda cosineof 0.978.Thus,by all measures,
thenetwork’s performances betterthanthatof theempirical
model. In fact, an empiricalmodeltrainedon 250,000sen-
tencesgeneratedy the A;s grammay including the 10,000
sentencef the Az testingcorpus,did not even performas
well asthe network againsthetheoreticalpredictiongdiver
gence0.902,distance0.206,and cosine0.944). Therefore,
suchanempiricalmodelis notagoodbasisfor evaluatingthe
network or for comparingthe network’s behaior to that of
Elman’s network.

One possibility is that, althoughnetworks trainedin the
small regimen might have worse performanceoverall, they
might nonethelesfiave learnedlong-distancedependencies
betterthan networks trainedthe complex regimen. To test
this hypothesiswe computedthe total probability assigned
by the network to predictionsthat could not, in fact, be
the next word in the sentenceas a function of positionin
the sentencg(seeFigure 4). In general,fewer than 8 of
the 26 words are legal at arny point in a sentenceproduced
by grammarE;s. Overall, performanceleclineswith word
position (exceptfor position 16 which canonly be end-of-
sentence)However, even 17% of the total outputactivation
spreadover 18 illegal wordsis respectablegonsideringhat
randomizedwveightsproduceabout71% illegal predictions.
Moreimportantly thecomple-regimennetworksoutperform
the simple-rgimen networks irrespectve of word position,
F(1,15)=25.7p<.001.

Although “starting small” failed to prove effective in the
main experiments,we attemptedto find conditionsunder
which the simpletraining regimenwould provide an advan-
tage,in orderto explain Elman’s previous findings. First,
we constructedadditional corporafor which startingsmall
might be expectedto be beneficial: corporacomposeden-
tirely of complex sentencesand a sixth classof grammars
(A") with no dependencie@ncludingnumberagreementpe-
tweenmain and embeddedlauses. However, the complex
training regimen continuedto yield slightly better perfor
mancethanthe simpleregimen(meandivergence:0.083vs.
0.085for Ajgg; 0.119vs.0.127for E;gq; 0.082vs. 0.084for

%5, respectrely). Anotherpossibilitywasthatthe choiceof
trainingparametergvasresponsibldor theeffect. Therefore,
networks were trained without momentum without the use



of softmaxconstraintsand with a sum-squareerror mea-
sure, ratherthan divergence. Theseparametersare identi-
cal to thosechosenby Elman. Learningratesrangingfrom

1.0to 0.0005crossedwith initial weightrangedrom +1.0to

+0.0001wereevaluated.Underno conditionsdid networks
trainedwith the simpleregimenperformsignificantlybetter
than networks trainedwith the complex regimen. However,

with very smallinitial weights,a few of the networks using
thecomplex regimenrequirednearly15 epochgqabouta mil-

lion word presentationsjo breakthroughan early plateau
in performance. Note, however, that such networks went
onto achiese reasonabl@erformancealthoughno networks
trainedunderElman’s conditionsperformedaswell asthose
trainedwith softmaxanddivergenceerror.

Conclusions

It is apparenthatsimplerecurrennetworksareableto learn
quitewell whentrainedexclusively onalanguagevith only a
small proportionof simplesentencesThe benefitof starting
small doesnot appearto be a robust phenomenorior lan-
guagesof this type and startingsmall often provesto be a
significanthindrancelt is notnecessaryo presensimplified
inputsto aid the network in learningshort-termdependen-
ciesinitially. Simplerecurrentnetworks learnthis way nat-
urally, first extracting short-rangecorrelationsand building
up to longerrangecorrelationsone stepat a time (see,e.g.,
Senan-SchreiberCleeremansg McClelland, 1991). Start-
ing with simplifiedinputsallows the network to developinef-
ficient representationshich mustbe restructuredo handle
new syntacticcompleity.

An importantaspectof Elman’s (1993)findingswasthat
a network wasableto learnwhenthe full rangeof datawas
presentednitially and the network’s memorywas limited.
Although the currentwork did not addressthis technique
directly, EIman reportedthat networks trainedwith limited
memorydid notlearnaseffectively asthosetrainedwith sim-
plified input. Giventhat,in the currentwork, we found that
the simple training regimenwas inferior to training on the
full complex grammarfrom the outset,it seemaunlikely that
hinderingthe network’s memorywould be of ary benefit.

It shouldbe acknavledged,however, thatthereare situa-
tionsin which startingwith simplified inputsmay be neces-
sary So-called‘latching” tasks(Bengio,Simard& Frasconi,
1994;Lin, Horne& Giles,1996)requirenetworksto remem-
ber informationfor extendedperiodswith no correlatedin-
puts. Bengioandcolleaguedave arguedthatrecurrentnet-
workswill have difficulty solvingsuchproblemsbecausé¢he
propagateckrror signalsdecayexponentially This is taken
astheoreticalevidencethat anincrementalearningstratay
is morelikely to corverge (Giles& Omlin, 1995). However,
suchsituationsjn which dependenciespaniong, uninforma-
tiveregions,arenotatall representatie of naturallanguage.

Importantcontingencie# languageandothernaturalttime
serieproblemgendto spanregionsof inputwhicharethem-
selescorrelatedwith the contingentpair. In thesecasesre-
currentnetworks are able to leveragethe weak short-range

correlationsto learn the strongerlong-rangecorrelations.
Only in unnaturalsituationsis it necessaryo spoon-feeca
network simplified input, and doing so may be harmful in

mostcircumstancesTheability of sucha simplifiednetwork

modelto learnarelatively complex predictiontaskleadsone
to concludethat it is quite plausiblefor a humaninfant to

learnthe structureof languagedespitea lack of negative ev-

idence despiteexperiencingunsimplifiedgrammaticaktruc-
tures,anddespitedetailed,jinnateknowledgeof language.
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