1 {lifER{E Value Iteration & 5K KRE Policy Iteration
1.1 FERRE PI

Policy Iteration (using iterative policy evaluation) for estimating 7 ~

1. Initialization
V(s) € R and n(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A0
Loop for each s € 8:
v V(s)
V(s) < >y, p(s',|5,m(s)) [r+V(s))
A + max(A, v —V(s)|)
until A < 6 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action < 7(s)
m(s) < argmax, y_, . p(s',7]s,a) [r+7V(s))
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7 ~ m,; else go to 2

Sutton and Barto (1998)

1.2 {fifER1E VI

Value Iteration, for estimating 7

Algorithm parameter: a small threshold § > 0 determining accuracy of estimation
Initialize V(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

| Aeo

| Loop for each s € 8:

| v+ V(s)

| V(s) = max, > . . p(s',7|s,a) [r+9V(s))]
| A < max(A, [v —V(s)|)

until A < 6

Output a deterministic policy, 7 ~ 7., such that
w(s) = argmax, Y, p(s',7[5,0) [r + 7V ()]

Sutton and Barto (1998)
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Sutton and Barto (1998)
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QFE

TENEERI%Q(s,a) [CEDKEE
RADITHIITEAKICH - TEIRSND
Q(S,, A ZTEF

Q(St, Ar) = Q(St, Ar) + o (Rt+1 +YQ(St+1, A/) - Q(Stht))



Q=EFE(2)
TENEBIEEEH
Q(s,a) [CEDKAHAEKEDT ) —T4TH1EE

7(Se4+1) = argmax Q(S¢41,2)

a/

Riv1+7Q(St41, A')
=Ret1 4+ 7Q(St41, argmax Q(Se41,4))
a/

=Ret1 + max yQ(Se+1, a')
a



QF&E(3)

Q(S,A) + Q(S,A) +a (R +7 max Q(S',4d) — Q(S, A)>

QF BICKYREQRIHICEE
Qs, a) = q«(s; a)



QEE 7ILdUX L

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a[R + ymax, Q(S',a) — Q(S, 4)]
S« S
until S is terminal




‘While other stable methods exist for training neural networks in the
reinforcement learning setting, such as neural fitted Q-iteration™, these
methods involve the repeated training of networks de novo onhundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function ((s.4;6;) using the deep
convolutional neural network shownin Fig. 1, inwhich 8, are the param-
eters (that is, weights) of the Q-network at iteration i. To perform
experience replay we store the agent’s experiences &, = (Spdptps + 1)
at each time-step f in a data set D, = {ey,...,¢4. During learning, we
apply Q-learning updates, on samples (or minibatches) of experience
(s,.r3") ~ U(D), drawn uniformly at random from the pool of stored
samples. The Q-learning update at iteration 7 uses the following loss
function:

Li(8;) = B(s.a,r) ~U(D)

2
(r+y max O(s',4';6;) — Ols.a; 9,»)) }

in which y is the discount factor determining the agent’s horizon, 6, are
the parameters of the Q-network at iteration 7 and 8, are the network
parameters used to compute the target at iteration i. The target net-
work parameters 8 are only updated with the Q-network parameters
(8;) every C steps and are held fixed between individual updates (see
Methods).
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