1 {lifER{E Value Iteration & 5K KRE Policy Iteration
1.1 FERRE PI

Policy Iteration (using iterative policy evaluation) for estimating 7 ~

1. Initialization
V(s) € R and n(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A0
Loop for each s € 8:
v V(s)
V(s) < >y, p(s',|5,m(s)) [r+V(s))
A + max(A, v —V(s)|)
until A < 6 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € 8:
old-action < 7(s)
m(s) < argmax, y_, . p(s',7]s,a) [r+7V(s))
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V = v, and 7 ~ m,; else go to 2

Sutton and Barto (1998)

1.2 {fifER1E VI

Value Iteration, for estimating 7

Algorithm parameter: a small threshold § > 0 determining accuracy of estimation
Initialize V(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:

| Aeo

| Loop for each s € 8:

| v+ V(s)

| V(s) = max, > . . p(s',7|s,a) [r+9V(s))]
| A < max(A, [v —V(s)|)

until A < 6

Output a deterministic policy, 7 ~ 7., such that
w(s) = argmax, Y, p(s',7[5,0) [r + 7V ()]

Sutton and Barto (1998)

2 —fi%fE

evaluation
m
s V

7~ greedy(V)

improvement

7T>|< -« >,U>|<

edy @3
<= ¢

Sutton and Barto (1998)

7T()—>’U7TO—>7T1—>’U7T1"'7T*—>’U*

(1)

U*,TF*

QFE

TENEERI%Q(s,a) [CEDKEE
RADITHIITEAKICH - TEIRSND
Q(S,, A ZTEF

Q(St, Ar) = Q(St, Ar) + o (Rt+1 +YQ(St+1, A/) - Q(Stht))

Q=EFE(2)
TENEBIEEEH
Q(s,a) [CEDKAHAEKEDT) —T4TH1EE

7(Se4+1) = argmax Q(S¢41,2)

a/

Riv1+7Q(St41, A')
=Ret1 4+ 7Q(St41, argmax Q(Se41,4))
a/

=Ret1 + max yQ(Se+1, a')
a

QF&E(3)

Q(S,A) + Q(S,A) +a (R +7 max Q(S',4d) — Q(S, A)>

QF BICKYREQRIHICEE
Qs, a) = q«(s; a)

QEE 7ILdUX L

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) + Q(S,A) + a[R + ymax, Q(S',a) — Q(S, 4)]
S« S
until S is terminal

‘While other stable methods exist for training neural networks in the
reinforcement learning setting, such as neural fitted Q-iteration™, these
methods involve the repeated training of networks de novo onhundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function ((s.4;6;) using the deep
convolutional neural network shownin Fig. 1, inwhich 8, are the param-
eters (that is, weights) of the Q-network at iteration i. To perform
experience replay we store the agent’s experiences &, = (Spdptps + 1)
at each time-step f in a data set D, = {ey,...,¢4. During learning, we
apply Q-learning updates, on samples (or minibatches) of experience
(s,.r3") ~ U(D), drawn uniformly at random from the pool of stored
samples. The Q-learning update at iteration 7 uses the following loss
function:

Li(8;) = B(s.a,r) ~U(D)

2
(r+y max O(s',4';6;) — Ols.a; 9,»)) }

in which y is the discount factor determining the agent’s horizon, 6, are
the parameters of the Q-network at iteration 7 and 8, are the network
parameters used to compute the target at iteration i. The target net-
work parameters 8 are only updated with the Q-network parameters
(8;) every C steps and are held fixed between individual updates (see
Methods).

41\

Sutton, Richard S., and Andrew G. Barto. 1998. Reinforcement Learning. Cambridge, MA: MIT Press.

	Blank Page
	2015DQN_loss.pdf
	Title
	Authors
	Abstract
	References
	Methods
	Preprocessing
	Code availability
	Model architecture
	Training details
	Evaluation procedure
	Algorithm
	Training algorithm for deep Q-networks
	Algorithm 1: deep Q-learning with experience replay

	Methods References
	Figure 1 Schematic illustration of the convolutional neural network.
	Figure 2 Training curves tracking the agent’s average score and average predicted action-value.
	Figure 3 Comparison of the DQN agent with the best reinforcement learning methods15 in the literature.
	Figure 4 Two-dimensional t-SNE embedding of the representations in the last hidden layer assigned by DQN to game states experienced while playing Space Invaders.
	Extended Data Figure 1 Two-dimensional t-SNE embedding of the representations in the last hidden layer assigned by DQN to game states experienced during a combination of human and agent play in Space Invaders.
	Extended Data Figure 2 Visualization of learned value functions on two games, Breakout and Pong.
	Extended Data Table 1 List of hyperparameters and their values
	Extended Data Table 2 Comparison of games scores obtained by DQN agents with methods from the literature12,15 and a professional human games tester
	Extended Data Table 3 The effects of replay and separating the target Q-network
	Extended Data Table 4 Comparison of DQN performance with linear function approximator

