Recurrent Neural Networks
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Figure 1: from Elman (1991)

1/15



Unfolding of RNN
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Seg2Seq model

Figure 3: From Sutskever, Vinyals, & Le (2014)
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Turing completeness

(Siegelmann & Sontag, 1991) said Turing completeness of RNN.
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Figure 4: RNN variations from
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Universal computer

Siegelmann & Sontag (1991) mentioned about the Turing completeness of RNN.
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Figure 5: RNN variations from
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LSTM
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Figure 6: LSTM from %1l (2016) &D
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LSTM in detail

The LSTM (left figure) can be described as the input signals x; at time ¢, the
output signals o,, the forget gate f,, and the output signal y,, the memory cell ¢,,
then we can get the following:

i = oWux+ Wiy +bi), 2
fi = o (Wyxi+ Wiy +by). 3)
0r = 0 Wexi + Wioyi1 + bo), (4)
8 = ¢Wiexi + Wheyr-1 + be) (5)
¢ = [iOc1+ii0g, (6)
hh = 00¢(c) (7)

where

o(x) = R (logistic function)
_exp(x) —exp(—x)
()= exp (x) + exp (—x)
and © menas Hadamard (element—wise) product.

(hyper tangent)
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Physiological correlates of gates in LSTM

Excitatory neuron Inhibitory

neuron

Inhibited neuron

from
http://kybele.psych.cornell.edu/~edelman/Psych-2140/week-2-2.html
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Neural Image Captioning
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“dog leaps to catch frishee”

Figure 7: right:(Karpathy & Fei-Fei, 2015), left:(Vinyals, Toshev, Bengio, & Erhan, 2015)
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RNN with Attention

14x14 Feature Map

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation
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bird flying over body water

Figure 8: Xu et al. (2015)
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Examples of NIC with attention

e s KRS

woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- mountain in the background.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest witt
a teddy bear. in the water. trees in the background.

Figure 9: Xu et al. (2015)
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Glimpse model
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Figure 1 O: A)Glimpse Sensor: Given the coordinates of the glimpse and an input image, the sensor extracts a retina-like representation p (x,, [P ))
centered at /,_ that contains multiple resolution patches. B) Glimpse Network: Given the location (1,,1) and input image (x¢), uses the glimpse sensor to extract
retina representation p (x,,l,,] ) The retina representation and glimpse location is then mapped into a hidden space using independent linear layers parameterized
by 02 and ():, respectively using rectified units followed by another linear layer (/% to combine the information from both components. The glimpse network

fe (; [Hgﬁéﬁg}) defines a trainable bandwidth limited sensor for the attention network producing the glimpse representation gt. C)Model Architecture: Overall, the
model is an RNN. The core network of the model fj, (iﬁh) takes the glimpse representation g; as input and combining with the internal representation at previous
time step /; — 1, produces the new internal state of the model /;. The location network f; (:6a) and the action network f (:6a) use the internal state /; of the model

to produce the next location to attend to /; and the action/classification at respectively. This basic RNN iteration is repeated for a variable number of steps. Mnih

etal. (2014)
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World model by RNN

At each time step, our agent
receives an observation from
the environment.

Warld Model

The Vision Madel (V) encedes the
high-dimensional observation into \ vV \
alow-dimensional latent vector.

z z z
The Memory RNN (M) integrates h h r h
the historical codes to create a M M M
representation that can predict

future states.

4 srnall Controller (C) uses the
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Figure 11: Ha & Schmithuber (2018) Fig.1
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World Models

Jay Wright Forrester, the father of
system dynamics, described a men-
tal model as:
The image of the world
around us, which we carry
in our head, is just a model.
Nobody in his head imag-
ines all the world, gov-
ernment or country. He
has only selected concepts,
and relationships between
them, and uses those to
represent the real system.
(Forrester, 1971)

Figure 12: A World Model, from Scott
McCloud’ s Understanding Comics.
(McCloud, 1993; E, 2012)
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