

Recurrent Neural Networks

入力層

隠れ層(中間層)

出力層

26

10

70

10

26

70 文脈層

単語埋込み層

単語埋込み層

ワンホット符号化

ワンホット復号化

恒等写像
一時刻前
のコピー

再帰
結合

Figure 1: from Elman (1991)

1 / 15

Unfolding of RNN

input(t-1) input(t) input(t+1)input

unfolding

V W W
W W W

V V V

U U

state

output

state(t-1)

output(t-1) output(t)

state(t) state(t+1)

output(t+1)

UU

Figure 2: RNNの時間発展

2 / 15

Seq2Seq model

Figure 3: From Sutskever, Vinyals, & Le (2014)

argmax
θ

(− log p (wt+1)
)
= f (wt |θ) (1)

3 / 15

Turing completeness

(Siegelmann & Sontag, 1991) said Turing completeness of RNN.

Figure 4: RNN variations from
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

4 / 15

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Universal computer
Siegelmann & Sontag (1991) mentioned about the Turing completeness of RNN.

Figure 5: RNN variations from
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

5 / 15

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LSTM

+

+

+

+

忘却ゲート

入力ゲート

ブロックへの入力

セル+

出力ゲート

ピープホール

ブロックからの出力

g

h

...入力
...

...

...

...

...

...
...

...

再帰入力

...

入力

再帰入力

入力

再帰入力

入力

再帰入力

出力
再帰入力へ

2. Vanilla LSTM
The LSTM architecture most commonly used in litera-
ture was originally described by Graves & Schmidhuber
(2005).1 We refer to it as vanilla LSTM and use it as a
reference for comparison of all the variants. The vanilla
LSTM incorporates changes by Gers et al. (1999) and Gers
& Schmidhuber (2000) into the original LSTM (Hochreiter
& Schmidhuber, 1997) and uses full gradient training. Sec-
tion 3 provides descriptions of these major LSTM changes.

A schematic of the vanilla LSTM block can be seen in Fig-
ure 1. It features three gates (input, forget and output),
block input, a single cell (the Constant Error Carousel),
an output activation function, and peephole connections.
The output of the block is recurrently connected back to
the block input and all of the gates.

The vector formulas for a vanilla LSTM layer forward
pass are given below. The corresponding Back-Propagation
Through Time (BPTT) formulas can be found in supple-

1But note that some studies omit peephole connections.

the

are

zt = g(Wzx
t +Rzy

t−1 + bz) block input

it = σ(Wix
t +Riy

t−1 + pi � ct−1 + bi) input gate

f t = σ(Wfx
t +Rfy

t−1 + pf � ct−1 + bf) forget gate

ct = it � zt + f t � ct−1 cell state

ot = σ(Wox
t +Roy

t−1 + po � ct + bo) output gate

yt = ot � h(ct) block output

3. History of LSTM
3.1. Original Formulation

This initial version of the LSTM block (Hochreiter &
Schmidhuber, 1995; 1997) included (possibly multiple)
cells, input and output gates, but no forget gate and no
peephole connections. The output gate, unit biases, or input
activation function were omitted for certain experiments.
Training was done using a mixture of Real Time Recur-
rent Learning (RTRL) and Backpropogation Through Time
(BPTT). Only the gradient of the cell was propagated back
through time, and the gradient for the other recurrent con-

1.0

g

c

i

f

y o

Figure 6: LSTM from浅川 (2016)より
6 / 15

LSTM in detail

The LSTM (left figure) can be described as the input signals xt at time t, the
output signals ot, the forget gate f t, and the output signal yt, the memory cell ct,
then we can get the following:

it = σ (Wxixt +Whiyt−1 + bi) , (2)

ft = σ
(
Wxf xt +Whf yt−1 + bf

)
, (3)

ot = σ (Wxoxt +Whoyt−1 + bo) , (4)

gt = ϕ (Wxcxt +Whcyt−1 + bc) , (5)

ct = ft ⊙ ct−1 + it ⊙ gt, (6)

ht = ot ⊙ ϕ (ct) (7)

where
σ (x) =

1
1 + exp (−x)

(logistic function)

ϕ (x) =
exp (x) − exp (−x)
exp (x) + exp (−x)

(hyper tangent)

and ⊙ menas Hadamard (element–wise) product.

7 / 15

Physiological correlates of gates in LSTM

from
http://kybele.psych.cornell.edu/~edelman/Psych-2140/week-2-2.html

8 / 15

http://kybele.psych.cornell.edu/~edelman/Psych-2140/week-2-2.html

Neural Image Captioning

視覚CNN 言語生成
LSTM

青空市場に一群
の人がいる

果物売り場に野
菜がたくさんある

Figure 7: right:(Karpathy & Fei-Fei, 2015), left:(Vinyals, Toshev, Bengio, & Erhan, 2015)

9 / 15

RNN with Attention

1. Input
Image

2. Convolutional
Feature Extraction

3. RNN with attention

LSTM

4. Word by
word

14x14 Feature Map

over the image
generation

A
bird
flying
over
a
body
of
water

Figure 8: Xu et al. (2015)

10 / 15

Examples of NIC with attention

Figure 9: Xu et al. (2015)

11 / 15

Glimpse model

lt-1

gt

Glimpse
Sensor

xt
ρ(xt , lt-1)

θg
0

θg
1

θg
2

Glimpse Network : fg(θg)

lt-1

gt

ltat

lt

gt+1

lt+1at+1

ht ht+1

fg(θg)

ht-1

fl(θl)fa(θa)

fh(θh)

fg(θg)

fl(θl)fa(θa)

fh(θh)

xt

ρ(xt , lt-1)lt-1

Glimpse Sensor

A)

B)

C)

Figure 1: A) Glimpse Sensor: Given the coordinates of the glimpse and an input image, the sen-
sor extracts a retina-like representation ρ(xt, lt−1) centered at lt−1 that contains multiple resolution
patches. B) Glimpse Network: Given the location (lt−1) and input image (xt), uses the glimpse
sensor to extract retina representation ρ(xt, lt−1). The retina representation and glimpse location is
then mapped into a hidden space using independent linear layers parameterized by θ0g and θ1g respec-
tively using rectified units followed by another linear layer θ2g to combine the information from both
components. The glimpse network fg(.; {θ0g , θ1g , θ2g}) defines a trainable bandwidth limited sensor
for the attention network producing the glimpse representation gt. C) Model Architecture: Overall,
the model is an RNN. The core network of the model fh(.; θh) takes the glimpse representation gt as
input and combining with the internal representation at previous time step ht−1, produces the new
internal state of the model ht. The location network fl(.; θl) and the action network fa(.; θa) use the
internal state ht of the model to produce the next location to attend to lt and the action/classification
at respectively. This basic RNN iteration is repeated for a variable number of steps.

information only in a local region or in a narrow frequency band. The agent can, however, actively
control how to deploy its sensor resources (e.g. choose the sensor location). The agent can also
affect the true state of the environment by executing actions. Since the environment is only partially
observed the agent needs to integrate information over time in order to determine how to act and
how to deploy its sensor most effectively. At each step, the agent receives a scalar reward (which
depends on the actions the agent has executed and can be delayed), and the goal of the agent is to
maximize the total sum of such rewards.

This formulation encompasses tasks as diverse as object detection in static images and control prob-
lems like playing a computer game from the image stream visible on the screen. For a game, the
environment state would be the true state of the game engine and the agent’s sensor would operate
on the video frame shown on the screen. (Note that for most games, a single frame would not fully
specify the game state). The environment actions here would correspond to joystick controls, and
the reward would reflect points scored. For object detection in static images the state of the envi-
ronment would be fixed and correspond to the true contents of the image. The environmental action
would correspond to the classification decision (which may be executed only after a fixed number
of fixations), and the reward would reflect if the decision is correct.

3.1 Model
The agent is built around a recurrent neural network as shown in Fig. 1. At each time step, it
processes the sensor data, integrates information over time, and chooses how to act and how to
deploy its sensor at next time step:

Sensor: At each step t the agent receives a (partial) observation of the environment in the form of
an image xt. The agent does not have full access to this image but rather can extract information
from xt via its bandwidth limited sensor ρ, e.g. by focusing the sensor on some region or frequency
band of interest.

In this paper we assume that the bandwidth-limited sensor extracts a retina-like representation
ρ(xt, lt−1) around location lt−1 from image xt. It encodes the region around l at a high-resolution
but uses a progressively lower resolution for pixels further from l, resulting in a vector of much

3

glimpse:一見

Figure 10: A)Glimpse Sensor: Given the coordinates of the glimpse and an input image, the sensor extracts a retina-like representation ρ
(
xt , lt−1

)
)

centered at lt−1 that contains multiple resolution patches. B) Glimpse Network: Given the location
(
lt−1
)

and input image (xt), uses the glimpse sensor to extract

retina representation ρ
(
xt , lt−1

)
. The retina representation and glimpse location is then mapped into a hidden space using independent linear layers parameterized

by θ0g and θ1g respectively using rectified units followed by another linear layer θ22 to combine the information from both components. The glimpse network

fg
(
;̇
{
θ0g , θ

1
g , θ

2
g
})

defines a trainable bandwidth limited sensor for the attention network producing the glimpse representation gt. C)Model Architecture: Overall, the

model is an RNN. The core network of the model fh
(
;̇θh
)

takes the glimpse representation gt as input and combining with the internal representation at previous

time step ht − 1, produces the new internal state of the model ht . The location network fl (;̇θa) and the action network fa (;̇θa) use the internal state ht of the model

to produce the next location to attend to lt and the action/classification at respectively. This basic RNN iteration is repeated for a variable number of steps. Mnih

et al. (2014)

12 / 15

World model by RNN

Figure 11: Ha & Schmithuber (2018) Fig.1

13 / 15

World Models

Figure 12: A World Model, from Scott
McCloud’s Understanding Comics.
(McCloud, 1993; E, 2012)

Jay Wright Forrester, the father of
system dynamics, described a men-
tal model as:

The image of the world
around us, which we carry
in our head, is just a model.
Nobody in his head imag-
ines all the world, gov-
ernment or country. He
has only selected concepts,
and relationships between
them, and uses those to
represent the real system.
(Forrester, 1971)

14 / 15

文献

浅川伸一. (2016). リカレントニューラルネットワーク．『人工知能学事典新版』．東京: 共立出版.
Elman, J. L. (1991). Incremental learing, or the importance of starting small (Vol. 9101; Tech. Rep.). San Diego, CA: University of California, San Diego.
Ha, D., & Schmithuber, J. (2018). World models. arXiv preprint.
Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). Boston, MA, USA.
Mnih, V., Heess, N., Graves, A., & Kavukcuoglu, K. (2014). Recurrent models of visual attention. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, &

K. Weinberger (Eds.), Advances in neural information processing systems 27 (pp. 2204–2212). Curran Associates, Inc.
Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with neural nets. Applied Mathematics Letter b, 4, 77–80.
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, &

K. Weinberger (Eds.), Advances in Neural Information Processing Systems (NIPS) (Vol. 27, pp. 3104–3112). Montreal, BC, Canada.
Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In Computer Vision and Pattern Recognition (CVPR).

Boston, MA, USA.
Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., & Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with

visual attention. arXiv:1502.03044.

15 / 15

	引用文献

