Recurrent Neural Networks

Figure 1: from Elman (1991)

Unfolding of RNN

Figure 2: RNN の時間発展

Seq2Seq model

Figure 3: From Sutskever, Vinyals, & Le (2014)

$$\underset{\theta}{\operatorname{argmax}} \left(-\log p\left(w_{t+1} \right) \right) = f\left(w_t \left| \theta \right. \right)$$
(1)

臣

3/15

Turing completeness

(Siegelmann & Sontag, 1991) said Turing completeness of RNN.

Figure 4: RNN variations from
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Universal computer

Siegelmann & Sontag (1991) mentioned about the Turing completeness of RNN.

Figure 5: RNN variations from
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LSTM

Figure 6: LSTM from 浅川 (2016) より < きょくきょうき

6/15

LSTM in detail

The LSTM (left figure) can be described as the input signals x_t at time t, the output signals o_t , the forget gate f_t , and the output signal y_t , the memory cell c_t , then we can get the following:

$$i_t = \sigma (W_{xi}x_t + W_{hi}y_{t-1} + b_i),$$
 (2)

$$f_t = \sigma \left(W_{xf} x_t + W_{hf} y_{t-1} + b_f \right), \tag{3}$$

$$o_t = \sigma (W_{xo}x_t + W_{ho}y_{t-1} + b_o),$$
 (4)

$$g_t = \phi (W_{xc}x_t + W_{hc}y_{t-1} + b_c), \qquad (5)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t, \tag{6}$$

$$h_t = o_t \odot \phi(c_t) \tag{7}$$

where

$$\sigma(x) = \frac{1}{1 + \exp(-x)} \text{ (logistic function)}$$

$$\phi(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)} \text{ (hyper tangent)}$$
and \odot menas Hadamard (element–wise) product.

Physiological correlates of gates in LSTM

from
http://kybele.psych.cornell.edu/~edelman/Psych-2140/week-2-2.html

Neural Image Captioning

Figure 7: right:(Karpathy & Fei-Fei, 2015), left:(Vinyals, Toshev, Bengio, & Erhan, 2015)

RNN with Attention

Figure 8: Xu et al. (2015)

Examples of NIC with attention

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Figure 9: Xu et al. (2015)

Glimpse model

Figure 10: A)Glimpse Sensor: Given the coordinates of the glimpse and an input image, the sensor extracts a *retina-like* representation $\rho(x_t, t_{t-1})$) centered at t_{t-1} that contains multiple resolution patches. B) Glimpse Network: Given the location (t_{t-1}) and input image (x_t) , uses the glimpse sensor to extract retina representation $\rho(x_t, t_{t-1})$. The retina representation and glimpse location is then mapped into a hidden space using independent linear layers parameterized by θ_g^0 and θ_g^1 respectively using rectified units followed by another linear layer θ_2^2 to combine the information from both components. The glimpse network $f_g(:[\theta_g^0, \theta_g^1, \theta_g^2])$ defines a trainable bandwidth limited sensor for the attention network producing the glimpse representation gt. C)Model Architecture: Overall, the model is an RNN. The core network of the model $f_h(:\theta_h)$ takes the glimpse representation g_t as input and combining with the internal representation at previous time step $h_t - 1$, produces the new internal state of the model h_t . The location network $f_l(:\theta_a)$ and the action network $f_l(:\theta_a)$ use the internal state h_t of the model to produce the next location to attend to I_t and the action/classification at respectively. This basic RNN iteration is repeated for a variable number of steps. Mnih et al. (2014)

World model by RNN

Figure 11: Ha & Schmithuber (2018) Fig.1

World Models

Figure 12: A World Model, from Scott McCloud's Understanding Comics. (McCloud, 1993; E, 2012) Jay Wright Forrester, the father of system dynamics, described a mental model as:

> The image of the world around us, which we carry in our head, is just a model. Nobody in his head imagines all the world, government or country. He has only selected concepts, and relationships between them, and uses those to represent the real system. (Forrester, 1971)

浅川 伸一. (2016). リカレントニューラルネットワーク. 『人工知能学事典新版』 東京: 共立出版.

Elman, J. L. (1991). Incremental learing, or the importance of starting small (Vol. 9101; Tech. Rep.). San Diego, CA: University of California, San Diego. Ha, D., & Schmithuber, J. (2018). World models. arXiv preprint.

- Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA.
- Mnih, V., Heess, N., Graves, A., & Kavukcuoglu, K. (2014). Recurrent models of visual attention. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Weinberger (Eds.), Advances in neural information processing systems 27 (pp. 2204–2212). Curran Associates, Inc.
- Siegelmann, H. T., & Sontag, E. D. (1991). Turing computability with neural nets. Applied Mathematics Letter b, 4, 77-80.
- Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Weinberger (Eds.), Advances in Neural Information Processing Systems (NIPS) (Vol. 27, pp. 3104–3112). Montreal, BC, Canada.
- Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA.
- Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., & Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. arXiv:1502.03044.