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Abstract

In spite of drastically increasing neuroimaging data, how semantic memory is or-

ganized has been a topic of controversy for decades. There still are contradictions

shown by children in conceptual development and among symptoms shown by pa-

tients with category–specific semantic memory disorders. Several hypotheses have

been proposed by cognitive– and neuro–psychologists based on empirical data and

their models for semantic memory derived from this evidence. Therefore, it might be

worth clarifying disagreements among them. We compared the differences between

two major contentions about semantic categorization. One is WITH and the other is

WITHOUT categorization hypotheses (Rogers and McClelland, 2011). Two hypothe-

ses, marginalization operation and tree structures expressed in the anterior temporal

lobes, were proposed as alternatives. Furthermore, essential problems in modeling

semantic memory and categorization were discussed. They were (1) dimensionality

of representation, (2) roles of intermediate layers, and (3) computational limitations

of error-driven learning algorithms. According to these frameworks, considering that

both WITH and WITHOUT categorization hypotheses could be similar might be pos-

sible.
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Semantic Dementia
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A major contribution of the Parallel distributed processing (PDP) approach might en-

able the consideration of internal representations for cognitive processes. Until the back–

propagation algorithm was developed, in general, constructing any cognitive models with

detailed internal representations were impossible. Although perceptrons (Rosenblatt, 1958)

could deal with complex tasks, there existed several limitations (Minsky and Papert, 1988).

After Rumelhart et al. (1986) developed the generalized delta rule, we could begin to con-

sider meanings of internal representations in which the activation of units in intermediate

layers could be observed as magnitudes of activations. From this background, Rumel-

hart (1990) proposed a model to scrutinize the representation of semantics. He and his

colleagues elaborated the model (McClelland and Rogers, 2003; McClelland et al., 2009;

Rogers and McClelland, 2008; Rogers and McClelland, 2004, 2011; Rogers et al., 2004)

and proved that the model could account simultaneously for both conceptual development

and semantic degradation.

Children and normal subjects can acquire “basic” concepts earlier and faster than con-

cepts at other levels (basic concept superiority). Patients with semantic dementia (SD) tend

to answer “superordinate” concepts when asked the names of objects presented visually

or verbally (superordinate concept preservation). Some literature expresses claims about

success in simulating both phenomena. We focused on these problems about internal rep-

resentations of semantic memory and revealed that the Rumelhart model would be neither

the simplest nor the smallest architecture. Moreover, we discussed whether the categoriza-

tion of semantic memory was required. Furthermore, essential issues concerning cognitive

modeling and limitations were discussed.

Neuropsychologists (Warrington, 1981; Warrington and McCarthy, 1983, 1987; War-

rington and Shallice, 1984; Warrington and McCarthy, 1994) have continued to explain the

double dissociation between living and nonliving things in brain-damaged patients, espe-

cially patients with SD. Cognitive psychologists (Collins and Quillian, 1969; Collins and

Loftus, 1975), on the other hand, have proposed hierarchical structures of semantic mem-

ory1. Rogers and McClelland (2004) and McClelland et al. (2010); Rogers and McClelland

(2011) have proposed that categorization is not always required to explain semantic mem-

ory. Although this WITHOUT categorization hypothesis (henceforth, WITHOUT hypoth-

esis) might be plausible, another WITH categorization hypothesis might also be possible.

Here, we propose an alternative hypothesis following a WITH categorization framework.

This alternative also implies that our semantic memories might be innately adaptive. If

both hypotheses are true, it might also be clarified that semantic memory has duality. In

this chapter, we discuss these problems concerning representations of semantic memory

and its categorization.

Here, we address three points as follows:

1The spreading activation theories of the 1970s proposed that different category representations were con-

nected in a graph structure that facilitated the “flow of activation” between categories that are “linked” in

memory (Collins and Quillian, 1969; Collins and Loftus, 1975).

1. Introduction 

Organization of This Chapter 
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1. Necessity for hidden and representation layers

2. Dimensionality of data expression

3. Indirectness of simulations

This chapter is mainly intended to shed lights on the structure of semantics. However, we

would like to refer to the additional problems as follows:

4. Basic concept superiority and superordinate concept preservation

5. Roles of hidden layers

6. Limitations as psychological models on error-driven learning algorithm

The essence of PDP models is that our knowledge would be represented in a parallel dis-

tributed manner. PDP models imply parallel distributed representations of knowledge.

Knowledge is embedded as connection weights. As cited above, there are some problems

that two-layered perceptrons cannot solve. With recruiting units in an intermediate layer

and propagating errors through backward, this three-layered system obtains computation-

ally better performance than that of perceptron. As a consequence, we could consider an

internal representation that the model can provide. However, the model should align with

biological reality (O’Reilly et al., 2012) and computational requirements (Marr, 1982) as

much as possible.

First, in Section 2, we drew a rough sketch of WITHOUT hypothesis (Rogers and Mc-

Clelland, 2008; Rogers and McClelland, 2004, 2011) and attempted to reveal several prob-

lems. After referring to a closely related study (Section 3), we discussed in turn, certain

problems (the necessity of hidden and representation layers, the dimensionality of data

expression, and the relation to empirical findings of basic concept superiority in develop-

ment and superordinate concept preservation in SD). Then, we referred to more general and

essential problems: roles of intermediate layers and limitations of gradient descent algo-

rithms. These problems might give us a fertile perspective. Our considerations about the

structure of semantic memory must make models plausible.

Although Rogers and McClelland (2011) admitted that “Categorization is the core mecha-

nism supporting semantic abilities,” they also insisted that “Categorization is not the only

efficient mechanism for storing and generalizing knowledge about the world.” They enu-

merated the puzzles of the categorization of semantic memory as follows;

1. Multiple category representation

2. Category coherence

3. Primacy of different category structures in development, maturity, and dissolution

4. Domain-specific patterns of inductive projection

2. WITHOUT Hypothesis 

Semantics ith or ithout Categorizationw w
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They also explained that “Furthermore, our framework suggests potential mechanisms that

account for the variety of phenomena summarized above, and also provides some clues as

to how the semantic system may be organized in the brain.” However, their approach also

invited other puzzles, which we attempted to describe. Some of them might be essential for

PDP modeling. For instance, Rogers and McClelland (2011) explained that “The semantic

system adopts a ‘convergent’ architecture in which all different kinds of information, re-

gardless of the semantic domain or the modality of input or output, are processed through

the same set of units and weights. This architecture permits the model to exploit high-

order patterns of covariation in the sets of visual, tactile, auditory, haptic, functional, and

linguistic properties that characterize objects.”

However, the Rumelhart model is a feed-forward neural network. In general, there is no

relation between the representation of intermediate layers when the input/output informa-

tion is adopted and the inverse problem when adopted the reverse input/output information

is adopted. We can show uncorrelated configurations of multidimensional scaling (Torger-

son, 1952, 1965, henceforth, MDS) against their results when we reversely set the attribute

data for the input layer and both the relation and attribute data for the output layer (Figure

4).

Figure 1 shows the Rumelhart model that they employed consistently (Rumelhart, 1990;

McClelland and Rogers, 2003; McClelland et al., 2010, 2009; Rogers and McClelland,

2008; Rogers and McClelland, 2004, 2011; Rogers et al., 2004).

Itemrelation

Attribute

Hidden

Representation

Figure 1. The Rumelhart model with five layers for hypothesis WITHOUT categorization.

Because Farah and McClelland (1991) employed a bidirectional model (Section 3) of

Boltzmann machines, their model would be confirmed as the “convergent” property.

Furthermore, the Rumelhart model employs error-driven learning algorithms. Rogers

and McClelland (2011) insisted that they modeled slow-learning semantic memory only.

However, semantic memory must include declarative knowledge. For instance, “Penguins

are in the Antarctic” or “Platypuses are mammals, but oviparous.” There is no affinity be-

tween error-driven learning algorithms and declarative knowledge. Declarative knowledge

has an all-or-nothing nature. We know it well or do not know it at all. Therefore, supposing
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semantic memory without declarative knowledge is difficult. Error-driven learning algo-

rithms are adequate for regression and classification. However, we must consider a type of

one–shot algorithm to process declarative knowledge.

The data adopted in the Rumelhart model are depicted below for later discussion. Table

1 shows dependency among objects, two superordinate categories (plant and animal), and

four subcategories (tree, flower, bird, and fish). Table 2 shows objects’ identities. Tables

3,4, and 5 show features of objects, such as “isa”, “can”, and “has” relations, respectively.

Table 1. A part of data from Rogers and McClelland (2004, page 395, Appendix B.2.).

Because all the items are living things, we deleted the two columns corresponding to

“living” and “grow,” as all their data were 1

Plant Animal Tree Flower Bird Fish

1 0 1 0 0 0 Pine

1 0 1 0 0 0 Oak

1 0 0 1 0 0 Rose

1 0 0 1 0 0 Daisy

0 1 0 0 1 0 Robin

0 1 0 0 1 0 Canary

0 1 0 0 0 1 Sunfish

0 1 0 0 0 1 Salmon

Table 2. Another part of data from Rogers and McClelland (2004, page. 395,

Appendix B.2). This matrix is an identity matrix; all the diagonal elements are 1, and

the rest are 0

Pine Oak Rose Daisy Robin Canary Sunfish Salmon

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Tables 1 and 2 can be regarded as a structure of category. Both the tables make a tree

structure. For example, the “pine” on the first row belongs to both plant and tree categories.

This information can be written as a nested list similar to the computer language LISP,

((1,0)((1,0)(0,0))((((1,0)(0,0))((0,0)(0,0))))). A binary tree structure can be always

expressed as a list, and, this list is equivalent to a binary tree structure. The list makes

a vector with the 14 dimensions
(

21 +22 +23 = 2+4+8 = 14
)

, indicating an object, for

Semantics ith or ithout Categorizationw w



144 Shin Asakawa

Table 3. “isa...” part of data from Rogers and McClelland (2004, page. 395,

Appendix B.2)

Pretty Big Green Red Yellow

0 1 1 0 0 pine

0 1 0 0 0 oak

1 0 0 1 0 rose

1 0 0 0 1 daisy

0 0 0 1 0 robin

0 0 0 0 1 canary

0 0 0 0 1 sunfish

0 0 0 1 0 salmon

Table 4. “can...” part of data from Rogers and McClelland (2004, page. 395,

Appendix B.2)

Move Swim Fly Sing Skin

0 0 0 0 0 pine

0 0 0 0 0 oak

0 0 0 0 0 rose

0 0 0 0 0 daisy

1 0 1 0 1 robin

1 0 1 1 1 canary

1 1 0 0 1 sunfish

1 1 0 0 1 salmon

example, a “pine.”

Thus, the data expression adopted in Rogers and McClelland (2004) can be considered

to have a hierarchical structure. Although the WITHOUT hypothesis insists on the existence

of graphical representations of semantics, another hypothesis can still simultaneously claim

a tree-structured representation. Note that both expressions can be translated to each other

without the loss of information. Figure 2 shows an equivalent expressions of a three-layered

binary tree.

Patterson et al. (2007) proposed the “distributed-plus-hub” hypothesis (Figure 3). Ac-

cording to the distributed-plus-hub view, a shared and amodal hub in ATL connects to

various types (including modality-specific representation) of semantic representations, and

communicates through them. These researchers considered that at the hub stage, associ-

ations between different pairs of attributes would all be processed by a common set of

neurons and synapses, regardless of the task. This notion is analogous to the “convergent”

architecture of Rogers and McClelland (2008); Rogers and McClelland (2004, 2011). Pat-

terson et al. (2007) might consider that the hub in ATL would play roles which are equiva-
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Table 5. “has...” part of data from Rogers and McClelland (2004, page 395, Appendix

B.2)

Roots Leaves Bark Branch Petals Wings Feathers Gills Scales

1 0 1 1 0 0 0 0 0 pine

1 1 1 1 0 0 0 0 0 oak

1 1 0 0 1 0 0 0 0 rose

1 1 0 0 1 0 0 0 0 daisy

0 0 0 0 0 1 1 0 0 robin

0 0 0 0 0 1 1 0 0 canary

0 0 0 0 0 0 0 1 1 sunfish

0 0 0 0 0 0 0 1 1 salmon

Superordinate

Basic level

Subordinate

(1 0)

(1 0)

(0 1)

Figure 2. Three-layered binary tree structure equivalent to Tables 1 and 2.

lent to the hidden layer shown in Figure 1 (Patterson et al., 2007, Figure 1b, page 977). In

the hidden layer shown in Figure 1, two flows of information converge into the hidden layer;

one is from the representation layer and the other is from the relation (to identify a task)

layer. Because the attribute (output) layer can be divided into several subgroups, Patterson

et al. (2007) might propose such a viewpoint. The attribute layer had six subgroups, ac-

cording to the information from the relation layer. The relation layer consisted of six units;

three of them indicated as “isa” relations, such as the superordinate (general), basic, and

subordinate (specific), and the other three units had meanings of relations, such as the ‘’is”

(Table 3), “can” (Table 4), and “has” (Table 5), respectively. The network had to respond

by activating one of the units in the subgroup, according to the information indicated by the

units in the relation layer indicated.

However, we can propose another interpretation about the role of the hub in ATL. Be-

cause a hierarchy of tree structures was included in the data of the Rumelhart model, the

Semantics ith or ithout Categorizationw w
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Action

Words

Shape
Color

Motion

Sound

Hub

Figure 3. Schematic diagram of the “distributed-plus-hub” hypothesis. Redrawn from Pat-

terson et al. (2007, Figure 1.b, page 977).

hub might encode the dependency of concepts. Guided by the hierarchical information pre-

sented in the hub, modality-specific information (sensory, motor, and linguistic) might be

integrated into the concept of an object. The Rumelhart model is a feed-forward neural net-

work model. Considering intermediate layers of the Rumelhart model as a convergent zone

might not be impossible but might be unreasonable. Note that representations obtained in

intermediate layers might be different from those obtained when the input and output data

would be reversed. Figure 4 shows the results. The configuration in Figure 4 indicates a

configuration of MDS, which was obtained from the original direction of information flow,

whereas Figure 5 indicates a configuration of the reverse direction from the attribute to item

layers.

Daisy     x=1,y=2,z=3

Pine
Oak

Rose

Robin
Canary

Sunfish
Salmon

Figure 4. Results of MDS on units activation in a hidden layer. An original feed-forward

flow of information from the item to attribute layers.

Each plot was drawn on the configurations of the three dimensions corresponding to

the greater three eigenvalues in order, whereas, five eigenvectors which were greater than

1.0 were obtained (see Section 5 for the discussion of the dimensionality of MDS). We
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Salmon
x=1,y=2,z=3

Pine

RoseOak

Daisy

Robin

Canary
Sunfish

Figure 5. Results of MDS on units activation in a hidden layer. The reverse direction from

the attribute to item layers.

must point out that the number of eigenvalues greater than 1.0 should be referred when

performing MDS. We could not find any descriptions about these values in the literature

(McClelland et al., 2010, 2009; Rogers and McClelland, 2008; Rogers and McClelland,

2004, 2011). It is important to know the number of eigenvalues greater than 1.0, because

the number of dimension can be determined based on the number of eigenvalues to be

extracted. Two-dimensional configurations might not be validated, or justified when we

have more than 3 eigenvalues, whose real parts would be greater than 1.0. Kiani et al.

(2007, Fig.5, page 4301) reported that when monkeys were shown natural and artificial

object images, a minimum of five dimensions were required to express their neurons in the

inferior temporal cortex.

On the contrary, we can ask a question: Can semantic memory be described as a two di-

mensional configuration, and such a two-dimensional configuration, that is, the best and the

only one way to describe semantics? The fact that cortices have two-dimensional maps is

only an existing proof. A necessary and sufficient condition must be proved in another way.

The fact that the cortex has two-dimensions might have emerged accidentally, by chance,

through evolution. Thus, another inference must induce the necessity of two-dimensional

representation of semantics.

Furthermore, the relation between forward and inverse functions (y = f (x) ↔ x =
f−1 (y)) is not always simple. Note that an inverse function, in general, cannot always

be interpreted easily. Moreover, there exists a case that the inverse function cannot be de-

termined analytically. Therefore, considering a model that assumes the flow of information

in both directions in advance is necessary. We must take into consideration that entities

of the inverse function represented are different from those of the original function. Feed

forward networks like the Rumelhart model cannot be alternatives to replace bi-directional

models like FM91 for the simplicity of computation.

Tables 3, 4, and 5 indicate features of objects. These tables are similar to the data of

Plaut and Shallice (1993); Hinton and Shallice (1991); Farah and McClelland (1991). In

Plaut and Shallice (1993); Hinton and Shallice (1991), the data were refereed as micro-

features. Rogers and McClelland (2008); Rogers and McClelland (2004, 2011) believed

that our semantic memories consist of both the hierarchical tree structure of objects and

microfeatures. On the other hand, Plaut and Shallice (1993); Hinton and Shallice (1991);

Farah and McClelland (1991) employed only the microfeatures. Figure 6 depicts the corre-

lation matrix among eight objects. The open and closed circles show positive and negative

Semantics ith or ithout Categorizationw w
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correlations, respectively. The sizes of circles indicate strengths of correlations. The corre-

lation matrix among microfeatures might be affected by semantic memory or categorization

among objects.

Figure 6. Correlation matrix of microfeatures Rogers and McClelland (2004, p395, Ap-

pendix B.2). Open and filled circles indicate positive and negative correlations, respectively.

The size of the diameter of each circle represents the magnitude of correlation.

Tyler et al. (2000), for instance, constructed a stimulus set and attempted to explain the

double dissociation to use this dataset. Figure 7 shows the correlation matrix they employed

by them. The upper left 8 × 8 small matrix indicates the correlation coefficients among

inanimate objects, and the lower right small matrix indicates the correlation coefficients

among animate objects. As shown in Figure 7, when compared to animate objects, inan-

imate objects have relatively lower correlation coefficients within category. This suggests

that animate objects share more features than inanimate objects. The correlation matrix

among microfeatures might affect the organization of semantic memory. Although there

were few studies to control correlation matrix as a dependent variable, an interesting ques-

tion is how the correlation matrix affects an organization of semantic memory. Proposing a

different group of simulations when considering random matrices consisting of correlated

random numbers by Cholesky decomposition is possible.

Rogers and McClelland (2004, 2011) drew a configuration as a progressive function of

a semantic memory organization, whereas they did not employ such configuration in then

case of semantic degradation. If they could explain both phenomena within a framework of

MDS, their hypothesis might further be plausible. They succeeded in explaining both basic

concept superiority in development and superordinate concept preservation in degradation

with one model; however, they did not try to explain both with one method, MDS. From the

viewpoint of simplicity of explanation, one model to explain and one method to analyze for

both phenomena would be desired.
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Figure 7. The correlation matrix adopted by Tyler et al. (2000).

The model proposed by Farah and McClelland (1991, henceforth, FM91) could explain

picture naming and selection tasks simultaneously. This might be one of the main rea-

sons they employed the Boltzmann machines. In addition, Dilkina et al. (2008) succeeded

in explaining task performances of five patients with SD by adjusting parameters in their

model.

Einstein said that “Everything must be made as simple as possible, but not simpler.”

The simpler the model, the better. The smaller the numbers of parameters, the better. If

we could explain everything in a simple and single model, the model could be regarded

as superior to other models. The Rumelhart model can also simultaneously describe both

basic concept superiority in development and superordinate concept preservation in degra-

dation simultaneously. It is worth seeking the integration of all models to explain every

cognitive process. Toward a theory as a Grand Unified Theory (GUT) in particle physics or

a Theory Of Everything (TOE) unifying gravity, we must explore a principle explaining all

of cognitive processes. However, determining a model that very simple to explain every-

thing, or a model that is very complex to describe a simple phenomenon might be difficult.

Unfortunately, Einstein never referred to such a criteria about the limitation of simplicity.

Because the FM91 model was proposed to simulate the visual/functional hypothesis (see

below), and to confirm its validity2,we first briefly introduce the hypothesis.

In neuropsychology, animate and inanimate concepts are well known to be separately

declined by brain damage. There are brain-damaged patients who cannot name, discrimi-

nate, identify, categorize, or repeat animate objects, whereas their performance with inan-

imate objects remains intact. On the contrary, another type of patients has selective im-

pairment with inanimate objects, whereas they show no deficits with animate objects. This

2According to the review of Thompson-Schill (2003), there are supportive evidence by neuroimaging studies

in which there are correspondences to each visual and functional categories. Further, there also exist response

selectivity: in case of selection the frontal lobe was activated, while temporal lobe is activated in case of

retrieval.

3. FM91 

Semantics ith or ithout Categorizationw w
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double dissociation between animate and inanimate objects is suggestive when we think

about the nature of human semantic memory organization. Warrington and her colleagues

(Warrington, 1981; Warrington and McCarthy, 1983, 1987; Warrington and Shallice, 1984;

Warrington and McCarthy, 1994) proposed that the visual/functional hypothesis, i.e., the

knowledge about visual and functional features, is separately represented in our brains.

Animate objects would share more visual properties than inanimate objects. On the other

hand, inanimate objects are often defined by their functional features. Therefore, if visual

semantic memory suffered damage, then knowledge about animate objects might selec-

tively emerge. It could also be predicted that damage in functional semantic memory, on

the contrary, might cause an inanimate object-specific deficit.

According to the visual/functional hypothesis, Farah and McClelland (1991) proposed

a neural network model to explain this double dissociation between living and nonliving

things. Figure 8 depicts the FM91 model. The FM91 model succeeded in showing category

specificity, when these researchers destroyed the network. In a picture naming task, visual

Functional Visual

Semantic systems

(20)

(60)

Visual(picture)(24)Verbal(name)(24)

Peripheral Input Systems

Figure 8. The FM91 model (Farah and McClelland, 1991). Digits in parenthesis indicate

the number of units.

(picture) stimuli were set and the system was required to activate corresponding units in

the verbal (name) layer. The system was trained to activate correct units in the verbal

(name) layer when verbal (name) stimuli were presented. This condition was considered

to correspond to the matching to sample task of Warrington and McCarthy (1983, 1987).

The verbal (name) and picture layers had 24 units each. These two layers behaved as

input and output devices. The peripheral layers were intermediated by semantic systems.

The semantic layer could be divided into two components, functional and visual systems.

The functional semantic system had 20 units and the visual semantic system had 60 units.

Therefore, the visual/functional ratio was 1 : 3. There were no direct connections between

the verbal and visual layers. The number of objects that the system had to learn was 10

living and 10 nonliving things. Four simulations were performed. The first two simulations

were different in the training epochs. The third simulation was performed without weight

decay. In the fourth simulation, functional and visual semantic systems each had 40 units.

Farah and McClelland (1991) decided the number of units activated for each object based on

the results of behavioral experiments. Living objects had 16.1 for visual and 2.1 functional
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units activated in average, whereas nonliving objects were represented by the average of 9.4
visual and 6.7 functional units, respectively. Figure 9 shows the result of the Experiment

2 by Farah and McClelland (1991). This figure can be considered the FM91 model that

could confirm the visual/functional hypothesis. We assumed that the curves in Figure9 as

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.0  0.2  0.4  0.6  0.8  1.0

p
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t 
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Severity of damage

living, damages to visual
  nonliving, damages to functional
nonliving, damages to visual
living, damages to functional

Figure 9. Results redrawn from the data of Farah and McClelland (1991, Figure 2).

functions of the severity of damages, are able to approximate to the function as follows:

f (a,x) = 1−
exp(ax)−1

exp−1
, (1)

where x indicates the severity of the damage. Then, we performed a least-square regression

to estimate parameter values of a for each curve. The value a can be regarded as the in-

dexing severity of the damage, (0 ≤ x ≤ 1). The estimated values of a are shown in Table

63.

3We believe that any statistical tests should not be applied to make judgments for differences among con-

ditions obtained in neural network simulations. If a neural network researcher decides a network topology,

number of units, training data set, a learning algorithm, values of parameters, a random number generator, and

a seed, then the result he or she will obtain is exactly the same deterministically. When he or she performs

simulations with different seeds, results may vary. Small differences among seeds make big differences. The

results completely depend on the random number generating algorithm they adopted. Statistical inferences, in

general, depend on the property of sampling data. Statistical tests have been developed based upon the strong

assumption that data reflects population. Average values of sample are assumed to distribute around average

values of population. But this assumption does not assure in neural network simulations. There exists no war-

ranty that results of neural network simulations can satisfy with assumptions that statisticians assume. Further,

many statistical tests were developed to satisfy with some restrictions of experimental conditions or data re-

sources. But the situation is different in neural network simulations. Neural network researchers can repeat

their simulations until they would obtain any results they hope.

Semantics ith or ithout Categorizationw w
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Table 6. The estimated values of a calculated from Figure 2 of Farah and McClelland

(1991)

concept damaged to

living 1.00 0.01

nonliving 0.20 0.30

Several points about the FM91 model should be discussed. If living things have more

information of visual semantic memory than nonliving objects, then category-specific dis-

orders of animals might emerge when semantic memory suffers damages. Note that the

FM91 model was postulated that visual semantic memory shared a larger area than func-

tional semantic memory. Therefore, neither discussion nor simulation might be required.

The FM91 model has too many parameters to be determined in advance. Farah and

McClelland (1991) decided that the ratio of visual to functional features, combining living

and nonliving things, is 3 : 1 (60 visual semantic and 20 functional semantic units), based

on the results obtained from behavioral experiments4. We agree with the hypothesis that

visual attributes are more important than functional attributes for defining living things.

But the ratio should not be considered strictly. If the FM91 model is adequate for semantic

memory, another approach should be worth taking. Farah and McClelland (1991) tried an-

other condition, the same numbers of units of visual and functional semantic systems (40

units each). How could we predict the performance of other ratios? How about changing

an average of 16.1 visual and 2.1 functional units for living things to an average of 9.4 vi-

sual and 6.7 functional units? It is an interesting “reverse engineering” problem to observe

the systems behavior as a function of the average values for visual and functional units for

living and nonliving things. Although the average values were determined based on the

results of behavioral experiments, the FM91 model might not necessarily work best with

the values. Other sets of values might be more adequate for describing the results of be-

havioral experiments or performances of SD patients. Farah and McClelland (1991) might

have not considered the internal correlation matrix among objects in the semantic memory

system. When we employ microfeatures as an internal memory representation, we can al-

ways calculate the correlation matrix among objects shown in Figures 6 and 7. Correlation

matrix can be the basis of similarity judgment, which in turn, can be the basis of category.

As described above, different correlation matrices consisting of correlated random numbers

by Cholesky decomposition might introduce a new viewpoint concerning semantic mem-

ory organization. Considering these possibilities, many parameters must be examined to

analyze the FM91 model’s performance. Because such a parameter space is too vast to con-

firm with Brute-Force manner, mathematical consideration must be performed. Necessary

and sufficient conditions that the model must possess will be revealed to mimic human per-

formances for both basic concept superiority in categorical development and superordinate

concept preservation in SD; or although the numbers of units activated for both living and

4The ratio of 1 : 3 might be called a magic number in computer programming. Because Farah and McClel-

land (1991) had considered this ratio as sacred and inviolable, they did not doubt the meaning of it, except for

Experiment 4.
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nonliving things are good as a first trial, other supportive evidence might still be required

to confirm that these numbers are true, because we do not know the mathematical prop-

erty of the system. The values Farah and McClelland (1991) employed are just estimators.

Therefore, we must be careful in interpreting the results. Otherwise, the values might be

considered as a type of black magic. It might be suspected that the conclusion should be

postponed until these values are confirmed as adequate. However, no such considerations

have thus far been contemplated.

Finally, it should be highlighted that the FM91 model has the same problem as the

WITHOUT hypothesis has. The correlation matrix among objects must play an important

role in semantic memory. However, Farah and McClelland controlled the average activation

ratio of living and nonliving things and the “magic” ratio of the units of visual and functional

semantic systems. Farah and McClelland did not seem to pay attention to the correlation

among objects. If so, the FM91 model cannot perform similarity judgment tasks. Concepts

or categories of living and nonliving things might be affected by similarity among members

belonging to the same concept. Therefore, the lack of information about the correlation

matrix among objects might be disadvantageous for a model of semantic memory. However,

because the FM91 model was derived from Boltzmann machines, the model can retrieve or

rebuild complete information from incomplete data. This aspect of the model might be

valuable to reemphasize.

The five-layered model is neither the simplest nor the smallest architecture. We propose

here a marginalization hypothesis as an alternative for semantic representation.

In sense of machine learning, model should be selected in accordance with the complex-

ity of the given data. The data employed by the Rumelhart model (Rumelhart, 1990; Mc-

Clelland and Rogers, 2003; McClelland et al., 2010, 2009; Rogers and McClelland, 2008;

Rogers and McClelland, 2004, 2011; Rogers et al., 2004) can be solved with a perceptron,

i.e., with no hidden layers. We can write that mapping information from relation and item

layers to the expression on the attribute layer was simple and easy. To hypothesize hidden

and representation layers, another reason is required. Again we quote that “the simpler the

model, the better.” The existence of hidden and representation layers is suspected, as they

are convenient for computing inner representation and performing MDS. Because Rumel-

hart and his colleagues wanted to know internal expressions, they wanted to introduce these

intermediate layers. We admire that the greatest advantage of the back-propagation algo-

rithm is its ability to calculate all values of all units in all intermediate layers. However,

the computational requirement differs from what our brains compute. The reason they want

to know inner representations appears to be other from what is going on in real implemen-

tation. Rumelhart needed hidden and representation layers, and this might be the reason

he introduced intermediate layers into his model. The existence of a representation layer

cannot be justified as a computational requirement in the Rumelhart model.

Referring to Farah and McClelland (1991), we suspect that a picture-naming task that

can deal with microfeatures as input data and a system must answer the corresponding

names of items. Moreover, we can consider another task: picture selection task, i.e., when

parts of microfeatures are given, the system must answer whole of them. Both tasks will

4. Necessity for Hidden and Representation Layers 
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be required to be modality independent, and reaction method independent representations.

We can settle a question such as “How can we get this type of an attribute-independent

representation, whenever whatever we want?”

An operation to marginalize for an input modality, or an attribute of environment, is

worth considering, because an operation of marginalization appears to be performable, ev-

ery time we want. Marginalization, though an attribute, can also be regarded as to identify

an abstraction. This operation might be similar to computing posterior probabilities to sum

up any variables in Bayesian inference:

p(a) =

Z

x
p(a,x) dx, (2)

where p does not always mean a probability.

If we sum up the computation of the relation layer, or marginalize for an input modal-

ity, we would obtain the same activation or configurations on one single hidden layer. We

suspect that two intermediate layers (representation and hidden) were employed to draw a

figure of an internal representation, independent from the relation information. The rep-

resentation layer was supposed to be relation information free, whereas the hidden layer

might contain the relation information. However, such a dichotomy might be a convenience

for researchers. We can question the nature of internal representations with PDP models.

Note that the task employed was so easy that no hidden layers were required. We can con-

sider a perceptron as a model of semantic memory. Those who would like to apply a rather

complex model should justify for doing so with plausible reasons. In its simplest form,

Occam’s Razor states that one should not make more assumptions than what are needed.

When multiple explanations are available for a phenomenon, “the simplest version is pre-

ferred” (http://www.spaceandmotion.com/Ockhams-Razor.htm). The fewest assump-

tions should be selected among competing hypotheses; otherwise, any positive, possible,

and strong reasons for the Rumelhart model having a five-layered structure should be re-

quired. Perceptrons cannot possess intermediate layers. It might be inadequate to employ

any perceptrons as models of internal representations. However, when we consider that the

task to be solved is a simple problem of classification or identification, a perceptron might

be able to be one possible candidate. In the area of statistical decision theory, there are pro-

posed criteria, AIC(Akaike, 1974), BIC(Schwarz, 1978), MDL(Rissanen, 1978; Grünwald,

2005), and NIC(Murata et al., 1994) are partially based on the log likelihoods, or Kullback-

Leibler divergence
R

ln
p(x)
q(x)

px, and penalty terms as functions of the number of free pa-

rameters. The statistical decision theory can give us an optimal solution among models;

however, it does not mean that the solution might be also be implemented in our brain.

Therefore, we must question psychological meanings of intermediate layers of the Rumel-

hart model whether the Rumelhart model is the only model that can explain semantics. If we

allow other models with direct connections between input and output layers, then the plots

or configurations calculated from activations of units in the hidden layers might change

drastically (Rumelhart and McClelland, 1986, compare Figure 4, page 64 with Figure 2,

page 321 in volume 1)).

Can we conceive neural correlates of the representation layer in the Rumelhart model?

McClelland et al. (2009) distinguished two kinds of semantic degradation:

Semantic Dementia (ATL damage), loss of central semantic knowledge.
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Semantic Aphasia (temporoparietal or prefrontal damage) showing multimodal semantic

impairments5.

McClelland et al. (2009) also wrote that “We have hypothesized that the patient groups

reflect the two primary ingredients in semantic cognition: semantic dementia reflects a

degradation of the core conceptual knowledge, whereas semantic aphasia arises from a

deficit in the regulation of semantic cognition.” As McClelland et al. (2009) explained,

“ATL might be considered as an action independent representation that is responsible for

semantic dementia. However, the “convergent” property might still be required even in this

case, although it might be possible to assume an intermediate representation.”

One attractive feature of the constructive approach such as neural network modeling

is that researchers can consider constructing any possible architectures concerning a phe-

nomenon without any restrictions. Figure 10 shows one of the possible alternatives with

direct connections.

Itemrelation

Attribute

Hidden

Figure 10. A model with direct pathways.

This alternative is worth considering, because there are no assurances that the Rumelhart

model is the one and the only model to explain the phenomena of concern. Moreover, no

disadvantages might not occur, even when assuming direct pathways. Rather, it is consistent

with the spirit of the PDP approach. As Rumelhart and McClelland (1986) described, the

role of intermediate layers changes drastically (see Section 7). We do not have any reason-

able evidence, excluding direct connections between the input and output layers. Notably,

direct connections across all the layers exist in the brain (Felleman and Essen, 1991, Figure

3).

Once we allow all direct connections similar to that done by Felleman and Essen (1991),

we must consider further feedback, and within layer connections. That would make models

move toward Boltzmann machines. When we allow all the direct connections like Felleman

and Essen (1991), further feedback and within-layer connections should be considered.

5This distinction might correspond to the findings of Thompson-Schill (2003).
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Figure 11. Redrawn from Felleman and Essen (1991) page 30, Figure 4.

Otherwise, this might lead us to a concept of the microcluster as in (Rumelhart and

Zipser, 1985, Figure 2, page 85). Rumelhart and Zipser (1985) described that the micro-

clusters having inhibitory connections within clusters and excitatory connections between

layers. Direct pathways among layers might make it difficult to direct comparison among

models. However, the biological reality insists that there are many connections among

layers, as shown in Figure 11. Researchers should not complain about the inconvenience

for model comparison. Without direct pathways, we can assume that all the information

should be inspected by one layer. This suggests advantage for some system administra-

tions. Because a direct pathway model cannot provide any configuration of MDS (at least

MDS might not be applicable to models with direct and/or bypassed pathways among lay-

ers), Rogers and McClelland (2004, 2011) would be expected not to adopt any models with

direct pathways. God never selects any models for the convenience of researchers.

Also, Dilkina et al. (2008, Figure 3) constructed a model with a direct connection be-

tween orthography and phonology in addition to a central hidden layer. However, these

researchers could not succeed in introducing the direct pathway. A related statement was
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Excitatory
connections

Excitatory
connections

Input layer

Hidden layer

Output layer

Micro clusters
(mutual inhibition)

Figure 12. The architecture of the competitive learning mechanism. Redrawn from Rumel-

hart and Zipser (1985, Figure 2, page 85).

given by McClelland et al. (2009) as follows:

Although the direct route tends to specialize in capturing typical spelling-

to-sound correspondences whereas the pathway through the integrative layer

tends to specialize in idiosyncratic word-specific information, the partitioning

is not absolute, and neither pathway corresponds to a strict rule system or a

strictly lexical system.

However, McClelland et al. (2009) did not describe any plausible reasons at all. They

did not prepare any mechanism in advance to divide orthographic space into subspaces

for conquering each word adequately. In multilayered perceptrons, in general, all units will

participate to process all data. Moreover, all units are responsible for all data in cooperation.

Therefore, another algorithm is required to process their tasks completely (see Section 8).

Other alternatives are also indicated in Figure 13. Biological reality might be necessary to

refute these alternatives (O’Reilly, 1998, see also).

Rogers and McClelland (2004, Figure 9.1, page 356) indicated the original Rumelhart

model, Figure 9.1b meant a localist representation, which considered a log-linear model

with second-order interactions. Figure 9.1c was the model with four subgroups of an inter-

mediate layer. Each subgroup corresponded to an attribute. This model could be considered

a model dealing with each attribute independently therefore, as the one that gathered a set

of unrelated networks meaninglessly. On the other hand, Figure 9.1d can be regarded as

significant. If we could sum up all the relations, we could get the accountable results accu-

mulated through all the experiences. Nevertheless, such trails with no representation layers

Semantics ith or ithout Categorizationw w



158 Shin Asakawa

Attribute

Hidden

relation Item

Attribute

Hidden

relation Item

Attribute

relation Item

Figure 13. Alternative models of the Rumelhart model.

could not be performed. In addition, McClelland et al. (2009) considered the effect of num-

bers of units in the intermediate layer. The effect of numbers of layers might be uncertain

when we adopt the standard back-propagation procedure (refer to discussions about the re-

stricted Boltzmann machines (Hinton, 2002; Hinton et al., 2006; Salakhutdinov and Hinton,

2006, RBM)), because errors would diffuse to all units in the layers below.

We insist here that there is no necessity for the Rumelhart model to have five layers.

The representation layer in the Rumelhart model exists only because researchers wanted to

acquire representations for their own purposes. This might be the only reason they intro-

duced the representation layer. We cannot think of any other plausible reasons. Models that

satisfy only one’s own purpose should be avoided. However, neural network modeling and

simulations would still be required to understand human cognitive functions, because we

do not know types of microfunctions and/or data representation will be required in detail

before we write a well-functioning program in advance. However, even such a program

might not assure that our brains would employ the same algorithm. Functional resemblance

gives us a necessary but not an efficient condition. Therefore, the meaningfulness of a

model should be measured by other criteria. Basic concept superiority and superordinate

concept preservation should be considered, along with the existence of the representation

layer, because we can get reasonable solutions without any hidden layers for their tasks.

Procedures for neural network modelings are very powerful such that almost all problems

might be solved without any constraints. This might imply that we should not employ any

models only because they can solve any given task. Generalization, plausibility, adequate-

ness, and other possible reasons should be considered in order for modelers to identify their

models as cognitive processes. Processes of acquisition and the decay of knowledge should

also be considered. We can criticize the Rumelhart model because of the lacks of two types

of connections: within layer and feedback connections. Because these connections can

emerge time-dependent properties as dynamical systems and different principles must be

considered to understand such systems, we do not use these connections here. As O’Reilly
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et al. (2012) wrote:

In this sense, a model of cognitive neuroscience is just like any other ‘the-

ory’, except that it is explicitly specified and formalized, forcing the modeler

to be accountable for their theory if/when the data don’t match up. Conversely,

models can sometimes show that when an existing theory is faced with chal-

lenging data, the theory may hold up after all due to a particular dynamic that

may not be considered from verbal theorizing.

The classical MDS (Torgerson, 1952, 1965) results in the eigenvalue problem. Magnitudes

of eigenvalues are important to be noted to determine the dimensionality of the given data

on MDS. Because Torgersons MDS was developed based on the eigenvalue problem, the

number of dimensions with nonnegative real maximum eigenvalues greater than 1.0 must

be considered to properly evaluate the dimensionality of configurations of MDS. Other-

wise, we might incorrectly interpret the dimensionality of the results acquired. Kiani et al.

(2007) performed, for example, MDS to neural activities in IT neurons of monkeys and

obtained five dimensional configurations. Because monkeys were given only pictures while

recordings and no declarative knowledge, visual information might include a minimum

of five-dimensional information. Considering visual information as a type of information

about microfeatures, more than five dimensions are required to express all information for

human semantic knowledge. However, the matrix of Appendix B3 in Rogers and McClel-

land (2004, page 396) consisted of two submatrices, “isa”, and microfeatures Rogers and

McClelland (2004) showed only two-dimensional configurations. Although Rogers and

McClelland (2004, Figure 3.6, page 100) discussed eigenvectors, they did not mention that

eigenvalues corresponded to eigenvectors. Therefore, their discussions cannot be justified

because of the lack of information about the dimensionality of MDSs they performed. As

shown in Figure 4, we could obtain a minimum of three-dimensional configuration with the

data of Rogers and McClelland (2004). This result might be worth reconsidering in terms

of the dimensionality of the representation of semantic knowledge. It would not mean that

the configuration of semantics must obtain two-dimensional mappings because our cortex

consists of two-dimensional space.

As described earlier, while constructive approaches have been attracting researchers,

there is no assurance for the correctness of such models, even if they provide good perfor-

mance. Good performance does not always indicate that a model is good. In other words, a

good model always satisfies necessary and sufficient conditions because the possible pres-

ence of a network and its information processing in vivo might not be uniquely determined.

There are no reasons to exclude other possibilities or hypotheses. About a quarter-century

ago, Crick (1989) described the back propagation as an “alien technology.” Crick (1989)

criticized that neural network models as alien reverse engineering. Neural network model-

ers believe that computers can mimic humans cognitive functions. However, people asking

emphatically that “What are calcium channels and how does fluorescence imaging of neural

activity work?” is a large population in the related fields. However, the further we go with

this notion, the sooner we can reconcile the alien technology with the much older notion

5. Dimensionality of Data Expression 
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the “Turing test” (Turing, 1950). Turing wrote:

The fact that Babbage’s Analytical Engine was to be entirely mechanical

will help us rid ourselves of a superstition. Importance is often attached to

the fact that modern digital computers are electrical, and the nervous system

is also electrical. Since Babbage’s machine was not electrical, and since all

digital computers are in a sense equivalent, we see that this use of electricity

cannot be of theoretical importance. [...] If we wish to find such similarities

we should look rather for mathematical analogies of function.

Multiple realizability is another aspect of a contemporary interpretation of the Turing test.

Moreover, multiple realizability and biological reality (O’Reilly, 2001; O’Reilly and Mu-

nakata, 2000) are sometimes cooperative, but sometimes exclusive each other. The com-

puter implementation of a model inevitably includes some degree of abstraction. Resem-

blance is a key to imitation and mimicry. Functional resemblance is also a key to simulation.

Validity, descriminability, predictability, reproductivity, and biological realizability must be

considered as much as possible. Aims are different from psychology, cognitive science, and

machine learning. Differences in aims might produce different implementations. Although

jet planes were developed on the aerodynamics of birds wings, their operating principles

and performances differ. When we analyze crashed airplanes, we do not obtain any sug-

gestions about methods of repairing birds wings. Does the Rumelhart model resemble with

the human or the aliens brain? Do diagnoses of network performances with removed units

correspond to diagnoses of brain-damaged patients?

The reason why MDS was not applied to superordinate concept preservation in neu-

ropsychology would need to be explained. Similarly, the reason that the “eight times prob-

lem” was not adopted to the basic concept superiority in developmental psychology might

also remain unclear. For the latter, there may be a tacit agreement that identifies the learning

of the back propagation with the developmental psychology of semantic concepts. A final

configuration of MDS and its progressive process on the way to obtain such a configuration

appear quite different. For example, when we learned the knowledge “Penguins are in the

Antarctica,” it did not imply that penguins living in the Amazon jungle had moved gradu-

ally to Antarctica. Although Amazon.com would deliver almost anything, even it might not

be able to deliver penguins to Antarctica on our semantic space. This type of declarative

knowledge must be learned by the one–shot algorithm, not a gradient decent algorithm,

such as back-propagation. Therefore, we can not compare an average error rate percentage

of each graders with an error curve of a single simulation.

Basic concept superiority effect can be enumerated as in Rogers and McClelland (2011,

chapter 5, page 176);

1. Children first learn to label objects with their basic-level name, instead of with more

general or more specific names.

6. Basic Concept Superiority and Superordinate  

Concept Preservation 
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2. In free naming tasks, adults prefer to name at the basic level even when they know

more general or specific names.

3. Adults are faster in verifying category membership at the basic level.

4. Adults are quicker to verify properties of objects that are shared by exemplars of a

‘basic’ category.

Rogers and McClelland (2004) considered progressive expansions of MDS as correspond-

ing changes of concept development; “basic concept superiority.” On the other hand, they

introduced another method to show degradations of semantic memory, “superordinate con-

cepts preservation.” One principle might be better to describe both phenomena than the ap-

plication of different principles. Changes of MDS configurations might be observed when

some units in hidden and/or representation layers after learning completing learning. Com-

paring normal configurations of MDS with damaged ones must provide interesting insights

about whether the categorization of semantics should be required. The explanation of basic

concept superiority and superordinate concept preservation with a single discipline would

provide a supportive evidence to the WITHOUT hypothesis. We could not find any expla-

nations of reasons that Rogers and McClelland (2004, 2011) did not conduct MDS with

unit destruction to simulate patients behaviors with SD.

Furthermore, if Rogers and McClelland (2004, 2011) had hypothesized that an error-

driven learning algorithm could simulate concept developments, they, at least, should pro-

vide some evidence that it would be superior to other algorithms, such as the Hebbian

(Hebb, 1949), or Contrastive Divergence (Salakhutdinov and Hinton, 2006), because the

progress of learning and the configuration of MDS obtained as a result are quite different.

To identify learning processes of the back-propagation algorithm with the algorithm of con-

ceptual development, some assumptions are required. There exist limitations and conditions

of the back-propagation algorithm (see Section 8).

Because graphical representations (i.e., MDS) are configured from correlation matrices

among objects, all information is presented in the matrices. The classical multidimensional

scalings proposed by Torgerson (1952, 1965) can be regarded as rewritings of eigenvalues

and corresponding eigenvectors of the matrices. Therefore, units in the models’s intermedi-

ate layers might contain similar types of information as the matrices. We previously showed

the correlation matrix in Figure 6, which indicates two large clusters, and that each cluster

has two sub clusters; the Rumelhart model appears to reflect this.

Patterson et al. (2007) proposed the “distributed-plus-hub” hypothesis (Figure 3). Ac-

cording to this hypothesis, modality-specific semantic memories are distributed in the brain.

Pieces of information would each be processed in the brain. The ATL would play an impor-

tant role to integrate them as an entity. If the “distributed-plus-hub” hypothesis is true, both

microfeatures and tree structures would be necessary for normal functioning of semantic

memory. The Rumelhart model also contains a tree structure, as a nested list expressions,

such as LISP (cited as Table 1 and 2). Note that expressions of semantic categories in the

ATL might be interpreted as a hierarchical list. If the “distributed-plus-hub” hypothesis

6.1. Basic Concept Superiority in Development 
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is true, and the ATL plays a role as a hub, then it appears to be an interesting idea that

tree structures might be represented in the ATL and any other properties (visual, verbal,

functional, and other modality-specific information) are represented in other areas.

Rogers and McClelland (2004, 2011) performed MDS to make configurations among con-

cepts and their progressions. However, they did not perform MDS to demonstrate the degra-

dation of semantics. It appears consistent when the same method for both concept devel-

opment and degradation was employed. If they succeeded in explaining the “superordinate

concept preservation” in SD in MDS configurations when destroying units in intermedi-

ate layers, their WITHOUT hypothesis might strengthen further. However, we could not

find any evidence that they employed MDS for describing SD, or superordinate concept

preservation. We would like to reintroduce Einsteins thought:

If you can’t explain it simply, you don’t know the subject well enough.

Scientific reasoning must follow such simplicity.

Rogers and McClelland (2004, 2011), rather, introduced the “eight times problems”

(see Section 6.3) to explain superordinate concept preservation. The “eight times problem”

appear to be indirect for proving their claim. The drawing configuration of MDS with de-

stroying units in intermediate layers might be more direct than the “eight times problems.”

Deleting units must be performed in accordance with the information of the Hessian matrix

(Hassibi et al., 1993; LeCun et al., 1990). The greater the amount of information the unit

can transfer, the more important the unit is. When an error gradient descent method was

employed, effects of deleting units in intermediate layers should be evaluated in accordance

with the Hessian information; at least, items that were likely to be reported as dog had to be

investigated. If Rogers and McClelland (2004, 2011) could succeed in showing that some

specific or basic levels of concepts were likely to be reported as superordinate concepts,

their assumption would be validated. However, a question whether frequency is the only

reason that superordinate concepts were reported more frequently than those of other lev-

els of concepts would remain unresolved. If we could assume that the information about

the tree structure of concepts was stored in the ATL, another explanation for superordinate

concept preservation might be possible.

The Input data of Rogers and McClelland (2004, 2011) consisted of four components:

a tree structure equivalent (Table 1), an identity (Table 2), microfeatures (Table 3,4, and 5),

and relation matrices. The identity (“item” layer in Figure 1) and relation matrices were for

input, and the tree and microfeatures matrices were for output. We can point out that there

is regularity among the items in the matrix to represent the tree structure, whereas we can

hypothesize that there is no correlation between items in the microfeature matrix. When

“plant” is “1”, “animal” is always “0”, either “tree” or “flower” is “1”, neither “bird” nor

“fish” is “1”. The probability of an item belonging to a “general” or superordinate cate-

gory is 0.5, to a basic category is 0.25, and to a “specific” or subordinate category is 0.125.

Therefore, we can predict that the system to tend to respond the most frequent category

among all the possible answers when they suffered damages. That might be one reason we

can observe the superordinate concept superiority in neuropsychology. As described above,

6.2. Superordinate Concept Preservation 
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the output matrix consisted of the tree structure and microfeatures data. It can be sup-

posed that the tree structure was dominated by the first-order statistics, frequencies. On the

other hand, microfeatures were dominated by the second-order statistics, correlations. Like

FM91, microfeatures of Plaut and Shallice (1993); Hinton and Shallice (1991) had greater

correlations within category than those between categories. The system might respond to

the most frequent item when suffering damages. This might be one possible explanation

of superordinate concept preservation in degradation of semantic categories. Therefore, we

can propose a hypothesis about the role of the ATL: the ATL integrates all modalities and

represents hierarchies of semantic concepts.

Rogers and McClelland (2004, 2011) introduced a frequency effect to explain “superor-

dinate concept preservation” in SD. It might be considered that systems degradation for

semantic memory would be described as a function of times that subjects and models were

exposed to environmental stimuli. Because their hypothesis implies that the more times

they were exposed, the more they would lose contents and details, they appeared to perform

simulations with eight times more frequent “general” items, whereas other items remained

at the same frequency. We, here, refer their hypothesis to the eight times problem. As the

eight times problem, we refer, for example, to McClelland et al. (2009, Figure 72.6) Rogers

and McClelland (2004, Figure 5.11, page 214), and Rogers and McClelland (2004, Figure

5.12, page 216). It appears strange to us that they did not employ eight times problem in

case where Rogers and McClelland (2004, 2011) demonstrated “basic concept superiority”

effects. On the other hand, they employed “eight times problem” in the case of degradation

to simulate brain-damaged patients performances with SD. If frequency effect, or the eight

times problem, is a key that affect all performances, both development and degradation

should show the same effects. Then, MDS should describe trajectories of any performances

for both learning and decaying processes. Rogers and McClelland (2004) gave an account

for this eight times problem as follows (Rogers and McClelland, 2004, Figure 5.12, page

216)):

Because the network is trained so frequently with the input dog paired with

various relations, it learns to use the name dog even before it has successfully

differentiated this item from other animals. Consequently, similarity based

generalization leads the network to over-extend the name to other animals early

in learning. As the dog representation is differentiated from the other animals

(first from the birds and fish, and later from the other mammals), the network

can learn to associate different responses with each, and the tendency to over-

extend the name is gradually eliminated.

However, their account is for description about overlearning, not for the preservation of a

level of concept when suffering damage. Neural networks, in general, can learn a propo-

sition: P → Q, and they also learn ¬P → ¬Q, because a value to be minimized is often

defined as a sum of squared differences between output and teacher signals. This implies

that “if P then Q,” and “if not P then not Q,” where there is no asymmetry and anisotoropy

between P and ¬P.

6.3. Eight Times Problems 
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When we consider neural network models as mappings from input ((xi,yi), i ∈ 1, . . .,m)

to output (y) spaces, units in an intermediate layer form a basis, but it is neither an or-

thogonal nor orthonormal basis. Therefore, each unit is not independent. Each unit in an

intermediate layer cooperates and contributes to the distribution of all the output signals.

However, this does not always imply that all units acquire the same function. In case of an

exclusive OR problem, for example, a three–layered perceptron with two hidden units gets

a solution that one unit can solve OR, and another unit can solve AND (see 7). The weight

between the OR and output units is positive, whereas that between the AND and output

units is negative. The AND unit inhibits its activity, when two input units are “1.”

Units in an intermediate layer form a basis, which is, however, not orthonormal nor

orthogonal. All units in an intermediate layer contribute each datum equally. Items with

low frequency might be dealt with exceptions. This is a “credit assignment problem” (Plaut

et al., 1996). But we cannot know in advance what type of credit will be assigned. Suppose

that a unit in an intermediate layer suffered damage. Other undamaged units will work

precisely because these units suffered no damage. The systems behavior will be changed

by the role played by the damaged neuron. Intact units will follow a probability to behave

corresponding to the frequency of learned items. Figure 14 shows a schematic of such a

situation in an exclusive OR problem. In Figure 14, the left 4 units (∑4
i=1 wohi

= 1) play a

x1

h1 h2 h3 h4 h5

y

x2

OR OR OR OR AND

0.33
0.33 0.33 0.33

-1.0

Figure 14. A possible solution for XOR problem with hidden units of more than 3.

role equivalently to an AND circuit. Notably, ∑i wohi
> α, and woh5

� α always hold. If

the AND circuit is intact, then the damaged network will be able to provide right answers

to three among four learned items. Therefore, the OR circuit is likely to be acquired as a

most frequent rule (75%), whereas the AND circuit is dealt with as an exception (25% of

frequency). In other words, an exception rule (AND circuit in this case) must be acquired

defeating frequent rules (OR). This analogy can be expressed as “Gaussian ocean with

Dirac’s islands” (Asakawa, 2014).

Whether a unit in intermediate layers will be activated when a certain input is exposed

is determined stochastically. Because all units in intermediate layers contribute to all data,

numbers of units for exceptions would appear inevitably and relatively decreased. If such

units are damaged, the system will fail to answer such exceptions correctly. However, it
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is questionable whether answers to such exceptions would be replaced by more frequent

items. Although the system learns a proposition , such as “if P then Q”, it does not learn

what should be answered in case of ”if not P.”

As asserted in the Bible: “God is fair,” there is no inequality among units. Every unit

has the potential to play any role equally. Again, because “God is fair,” output units cannot

distinguish routes of connections: which connection comes from which layer, because the

output units have no monitors. Thus, we consider meanings of units in intermediate layers

in the next section.

The Rumelhart model (Rogers and McClelland, 2004, 2011) and its tasks were so easy that

no hidden layers were required for completion. If so, why and how do hidden layers exist?

What are the roles or meanings of hidden layers? Here, we consider possible reasons for

hidden layers in a general framework. Introducing direct pathways makes a drastic change

in internal representations. In an exclusive OR problem, we need at least two hidden units

for a solution. However, only one unit is required for a solution when we allow direct

connections between input and output units (Rumelhart and McClelland, 1986). We will

take this problem into consideration in detail in Section 7.

At least 6 roles of hidden layers can be enumerated:

1. Higher-Order Interactions by Log-Linear Models

2. Controlling Dimensionality (Reducing and Expanding of Dimensions) like Principal

Component Analysis (PCA) and RBM (Hinton, 2002; Hinton et al., 2006; Salakhut-

dinov and Hinton, 2006)

3. Blind Source Separation, Independent Component Analysis (ICA) (Hyvärinen et al.,

2001; Hyvärinen and Oja, 2000; Bell and Sejnowski, 1995; Comon, 1994)

4. Planning, Prediction, Control, Retrieval, Restoration, or Processing Priming Stimulus

by the Simple Recurrent Networks (SRN) (Elman, 1990, 1991, 1993; Elman et al.,

1996)

5. Extraction of Invariant InformationMarr (1982)

6. Topological Mapping, Self-Organization Mapping(Kohonen, 1985)

Feed-forward neural network models can be regarded as log-linear models. Learning

in feed-forward neural networks can be identified as finding adequate connection strengths

between units. These values (including higher interaction terms) consist of a group of ba-

sis functions. We will consider this problem in section 7. In controlling dimensionality,

reducing dimensionality may include the principle of parsimony (or Occam’s razor) such

as PCA. In deep learning, multilayered architectures have an important role for improv-

ing their performances, whereas the standard back-propagation algorithm does not possess

such advantages. Salakhutdinov and Hinton (2006) and Hinton et al. (2006) observed that

errors would be propagated to all units in all layers below, therefore spreading errors to
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all units that might show worse convergence properties. Because the restricted Boltzmann

machines (Hinton, 2002; Salakhutdinov and Hinton, 2006) consist of binary units that will

be activated stochastically, we cannot introduce the back-propagation rule that is differen-

tiable. And, once an RBM was trained, all the connection weights between units would

be fixed. Therefore, in principle, the overspreading of errors might not occur in RBM.

RBM has been employed for both reducing and expanding dimensionality. Blind source

separation and ICA have been used as denoising techniques. These are regarded as signal

separators or rectifiers. ICA plays an important role in reducing dimensionality. Increasing

dimensionality or an addition of dimensions would give us drastically improvements, as an

exclusive OR problem (Rumelhart and McClelland, 1986). Reducing dimensionality, or the

reduction of dimension, and/or the denoising process would also play an important role in

information processing.

SRN has abilities to predict, plan, control, retrieve, restore, and so on. Moreover, at-

tractor networks proposed by Hinton and Shallice (1991) and Plaut and Shallice (1993) can

also be regarded as recurrent networks. Attractor networks could be employed to simulate

performances of patients with deep dyslexia. Thus, memory retrieval and its disorder can

be mimicked with these hidden layers.

The extraction of invariant information is essential for perception(Marr, 1982), such

as location, color, rotation (Affine transform), or modality free information. Orientations,

edges, circles, or gradation detections can be also applied to this operation.

Topological mapping, or self-organization mapping Kohonen (1985), are also another

important role of hidden layers. Topological mapping, in other words, the self-organization

mapping principle is often observed in primary cortices in visual, auditory, tactile, and so-

matosensory information processing. This principle appears to be general and universal in

neural information processing. As Rumelhart and Zipser (1985) indicated, winner–take–all

circuits in Figure 12 (or mutual inhibition) in microclusters might be an important com-

putational principle in our brains. Softmax function f (xi) = exp(xi)

∑ j exp(x j)
might be employed

to implement winner–take–all circuits. We can point out a relation between microclus-

ters(Rumelhart and Zipser, 1985) and convolutional deep belief networks for scalable unsu-

pervised learning of hierarchical representation (http://videolectures.net/icml09 lee cdb/).

These roles of intermediate layers are not independent of each other. But all of them

should be considered as candidates for implementing cognitive functions.

Here, we focus on a case of an exclusive OR problem. Figure 15 indicates an example.

To solve the exclusive OR problem in three-layered-feedforward networks, we need two

units in a hidden layer. One unit stands for an OR circuit and the other for an AND circuit.

In this case, the connection weight from the OR to the output is positive, and the weight

from the AND to the output is negative. Therefore, the system behaves like an AND circuit

in the case of the input signals being (0,0), (0,1), (1,0). However, the systems output is

inhibited when the input signals are (1,1). Although the OR and the AND units in the

hidden layer play different roles, the only difference between the two hidden units is the

thresholds values. When we suppose the formal neuron proposed by McCulloch and Pitts

(1943) (in case of a logistic function, f (x) = 1/(1+ exp(−αx)), the logistic function is

Thought Experiments of XOR 



167

NOT

OR AND

Output

Hidden

Input

Figure 15. A possible solution for XOR problem without direct pathways.

approximated to a step function in the limitation of α → ∞), both logic functions, OR and

AND, can be expressed as the difference between the threshold values. Thus, a combination

between two logic functions makes an exclusive OR circuit. We can here consider the OR

unit as dominant and the AND circuit as irregular, because 75 % of answers were correct

when the OR unit was destroyed. On the other hand, when the AND unit was destroyed, 50

% would be correct in (0,0) → (0), and (1,1) → (1).

Another solution is indicated in Figure 16 (Rumelhart and McClelland, 1986, redrawn

from, Figure 2, page 321, chapter 8, vol. 1). Direct pathways were introduced between

the input and output units. Note that only one unit was required in this case, although the

exclusive OR problem is not liner separable in the two-dimensional space composed of

input units.

NOT

OR
AND

Output

Input

Hidden

Figure 16. Another solution of XOR problem with direct pathways.

We can summarize the two examples as follows:

1. The system with direct pathways must have an AND circuit, and the weight from the

hidden to the output units is negative, which represents NOT.

2. The system without direct pathways requires at least two units in the hidden layer.

One unit in the hidden layer represents an AND, and the other represents an OR.

Semantics ith or ithout Categorizationw w
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As described above, there is no reason for favoring direct pathways, or indirect path-

ways. When considering the Rumelhart model, we also have no direct reason to reject to

the introduction of direct pathways. There is also no reason to introduce hidden and repre-

sentation layers. Therefore, there is no reason to accept the Rumelhart model, nor to reject

it.

Log-linear models can be introduced to formalize roles of intermediate layers as higher

interactions terms. A log-linear model without interactions can be described as follows:

p(y |x) =
1

Z
exp

(

θ0 +∑
i

θixi

)

, (3)

where Z is a normalization factor to interpret this equation as a probability. xi indicates

each input, and θi indicates each parameter to be estimated. When we consider higher

interactions, we can obtain the equation as follows:

p(y |x) =
1

Z
exp

(

θ0 +∑
i

θixi +∑
i

∑
j

θi jxix j +∑
i

∑
j
∑
k

θi jkxix jxk + · · ·

)

. (4)

Because the equation (4) has many parameters to be estimated, it makes an ill-posed prob-

lem. One advantage of the standard back propagation is to acquiring solutions of equations

with many parameters.

In case of XOR with direct connections (see Figure 16), we can obtain the equation as

follows:

p(y |x) =
1

Z
exp

(

θ0 +∑
i

θixi +θ11x1x2

)

, (5)

Note that each x ∈ (0,1) is a binary; therefore x1x2 = 1 when and only when both x1 and

x2 are 1. This second-order interaction makes it an AND circuit. Therefore, we can predict

θ11 6= 0. In particular, in the case of parameters for both single terms of x1 > 0 and x2 > 0,

these two terms make an OR circuit and also make θ11 to be negative to inhibit the output

of the AND circuit when input signals are x1 = 1 and x2 = 1.

The back-propagation algorithm can calculate parameters of any higher-order interac-

tions if sufficient units are in an intermediate layer, even in the case that there are fewer

numbers of the training dataset than the number of parameters to be estimated6. However,

log-linear models with higher interactions present the difficulty that we cannot know in

advance how many interactions should to be considered. The standard back propagation

might have a possibility of calculating unknown higher-order interactions without explicit

specifications.

Each unit in an intermediate layer can be regarded as a single or an interaction terms

in log-linear model. If sufficient units, more than a task requires, can be provided, then the

6Plaut et al. (1996) might be able to be formulated by the first and the order interaction terms, because

their model had three components, onset, vowel, and coda. These three components made regular and irreg-

ular words. Irregular words might be possible to describe as much lager values of parameters of third order

interaction terms.

Introduction of Log-Linear Models 
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system can perform the task; otherwise, the system will fail to complete the task. Therefore,

we can claim that a task can determine the lowest number of units in an intermediate layer.

The number of units can be determined in accordance with the task’s complexity. This also

implies that the number of units required in intermediate layers does not vary performances

at all, if the minimal number of units is supplied. Many studies failed to account for the

effects of number of the units, (Dilkina et al., 2008, for example). This might be a trap or

a pit in which many modelers were prone to fall. The minimal number of units in a model

grantees that their models will solve given tasks; however, increasing unit numbers in in-

termediate layers does not always assure better performances. There might be no meanings

if simulations were performed with variance in the number of units in intermediate layers

as an independent variable. On the other hand, the study of Ueno et al. (2011) is valuable,

because different roles were assigned layer by layer.

We emphasize again that the Rumelhart model is worth considering, because it could ex-

plain the development and degradation of semantic category within one framework. As

explained in the previous sections, this model cannot be considered as the simplest, nor the

most adequate. Here, we summarize points about the standard back-propagation algorithm.

We admire the standard back propagation as one of the most powerful algorithms in the

world. It has been applied to not only psychology and cognitive science but also compu-

tational intelligence and machine learning. It is useful because it is not a theory or a hy-

pothesis, but an algorithm proposed for models to adapt the external environment. Because

It is an architecture independent algorithm, it has unlimited possibilities for applications to

many problems.

However, it also has problems. There are several impossibilities without additional

assumptions. We summarize here these shortcomings. Note that these shortcomings would

be caused inevitably because it improves performance based on the gradient vector of errors.

This implies that all algorithms based on gradient descent (in the same meaning ‘ascent’)

methods have the same problems. We show a list of problems that such gradient descent (in

other words, error driven) algorithms cannot avoid. This may be a checklist for constructing

models.

Either minimizing sums of squared errors or maximizing log likelihoods, gradient

descent/ascent algorithms have to move in a small step-by-step manner toward mini-

mal/maximal points. The direction that the gradient vector indicates at any point may not

always be the optimal point. The small value to determine size for moving in a direction

that a gradient vector at a point indicates is called a learning coefficient. The size of this

learning coefficient is preferably, much smaller to avoid overshooting or the system will

oscillate or diverse. For instance, in the standard back propagation, weights are updated as

follows:

∆w = ε
∂E

∂w
= ηδ f ′ (x) = εδ(1−δ) x, (6)

where x indicates input vector, δ is a difference between a teacher and output signals

(δ = (t −x)). η indicates a learning coefficient. When the learning has converged, we

have, δ = 0, then we have ∆w = 0, where no change would occur. Thus, after learning is

8. Limitations of Error-Driven Learning  Algorithms 
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complete, more training might show no changes. For animals including our human beings,

rats, monkeys, and others, this is not true. Everyday iterative trainings are useful to main-

tain a level of performances and to avoiding forgetting. However, machines cannot show

such overtraining and erasure resistance effects without additional assumptions.

Below, we show a list of effects that machines trained by gradient descent algorithms

will not show without additions of extra assumptions.

1. Abstract Concept Acquisition or Formation

2. Adaptive Algorithm, or Constructive Architecture

3. Age of Acquisition Effect

4. Catastrophic Interference

5. Divide and Conquer Method

6. Increasing Erasure Resistance by Repeated Practices

7. Insight Learning

8. Interactions Among Hidden Units

9. One–Shot Algorithm

10. Reward

11. Sparse Coding

As an example of abstract concept acquisition, suppose a child is learning a concept

of addition and its commutative law. Laws of operations of numbers (associative, com-

mutative, anti-commutative, idempotent, and so on) cannot be learned by gradient decent

algorithms. McCloskey and Cohen (1989) trained the networks with two input units for

numbers to be added and one output unit for the answer. After learning was completed,

they presented to their models the dataset in which they replaced a quantity to be added

with a quantity to add. They found that their models could not acquire the concept of com-

mutative law. Abstract concepts, such as commutative law, cannot be explain in terms of

generalization. In a context of machine learning, generalization is measured as the amount

of errors when replacing a training dataset with test dataset. A sufficiently powerful al-

gorithm can obtain correct answers in cases of interpolation, even in cases of extension.

However, the acquisition of commutative law must be out of the scope of such an algo-

rithm. Even highly intelligent people might find it difficult to say whether commutative law

holds for all numbers (natural numbers, integers, rational numbers, real numbers, complex

numbers, metrics, quaternions, and so on). When extending this question to query an alge-

braic structure, it is suspectable whether an operation will be true a semigroup or an abelian

group. Neural networks are useful to some extent in cases of regression and classification,

but cannot exaggerate too much.

Adaptive algorithm, or constructive architecture, is supposed to be a promising ap-

proach for the survival of the fittest. Organization, in general, possesses such adaptive
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ability that it can metamorphose according to the complexity of tasks. Metamorphosis is

quite another thing from gradient descent algorithms, but worth considering. Fahlman and

Lebiere (1990) proposed an adaptive neural network model called “cascade correlation.”

Shultz (2003) applied the cascade correlation to Piaget’s tasks (for example, a balance

beam task) and succeeded in simulating developmental stages. Such adaptive algorithms

are considered as candidates for additional assumptions.

The Age of acquisition effect has often been reported in various psychological fields.

However, the standard back propagation does not have memory devices to store when an

item was learned. Therefore, another additional assumption is required to implement this

effect.

Catastrophic interference (McCloskey and Cohen, 1989; Ratcliff, 1990) is a good evi-

dence that gradient descent algorithms sufficiently strong abilities. Any content that systems

learned once would be overwritten with a new learning content. Therefore, the system often

forgets what happened in the past. To avoid catastrophic interference and to implement the

age of acquisition effect, another additional assumption is required.

Divide-and-Conquer algorithms (Jordan and Jacobs, 1994) “attack a complex problem

by dividing it into simpler problems whose solutions can be combined to yield a solution

to the complex problem. This approach can often lead to simple elegant and efficient al-

gorithms.” However, one entire system dealing with a complex problem requires many

computational resources to obtain correct answers.

Increasing erasure resistance by repeated practices must also be difficult to implement

for gradient descent algorithms without additional assumptions. If a system learns an item,

then the error between the output and teacher signals would be almost zero. Therefore any

updates might not be needed at all.

Insight learning was discovered by Köhler, a German Gestalt psychologist. This is

quite different from trial and error learning. Inspiration appears to occur suddenly, in a

case where no gradual approximation can be observed at all. Insight learning is one of the

difficult cases to implement with gradient descent algorithms.

One-shot algorithm corresponds to episodic and auto autobiographic memories. Such

impressive events for these memories might happen only once in ones life. Therefore, no

gradual updates are likely to b repeated. O’Reilly et al. (2012) also discussed the one-shot

algorithm and the reason of existence of it(McClelland et al., 1995).

Reward is an opposite concept to punishment, and shaping is based only on reward not

on punishment. Because gradient descent algorithms are based on the gradient of error func-

tion, there are no spaces for praise or reward to modify behavior. Sutton and Barto (1998)

formalized reinforcement learning, in which learning, learning take place to maximize the

expected reward. This differs from gradient descent algorithms

The four algorithms, such that sparse coding, competitive learning (Figure 12), winner-

take-all, and softmax function, must be implemented independently from gradient descent

algorithms, for the same reason as divide-and-conquer algorithms.

Semantics ith or ithout Categorizationw w
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Below is the summary of this study:

1. Demonstration of the negation of intermediate layers to express internal representa-

tion

2. Proposal of marginalization as the alternative of internal representations

3. Indication of equivalency among tree structures, list expressions, and graphical

(MDS) representations

4. ATL might represent such tree structures.

5. Dimensionality of data expression. Eigenvalues must be indicated whenever config-

uration is drawn.

6. Possible roles of intermediate layers

7. Computational limitation of gradient descent algorithms

The Rumelhart model is neither the simplest nor smallest architecture. We insisted that

there was no necessity to assume the hidden and representation layers to express the internal

representation of a semantic category. Rather of assuming intermediate layers, an operation

to marginalize attributes was proposed. This operation would be equivalent to the roles

of intermediate layers, and the operation would be performed whenever necessary. Spatial

(graphical) and tree-structured representations have mutual compatibility without any loss

of information. In this, in essence, any differences between tree structures and spatial repre-

sentations. This is neither dispute nor contradiction. Although one hypothesis insists on the

existence of graphical representations of semantics, we claim another to be tree-structured

representations. However, these differences might be proposed from opposing viewpoints.

Our semantic memories are encoded among connections of neurons in IT gyrus or other

regions. In meanings that they can be interpretable, there appears no difference between

graphical and tree models. The difference in interpretation between them might be whether

distances can be expressed explicitly or implicitly. In a framework of graphical representa-

tions, it is difficult to explain for exceptions such as “chickens can’t fly”. On the other hand,

implementation is likely easy for tree structures because they can inherit attributes of higher

concepts. However, similarity does not always imply hierarchy. It might be safe to claim

that both models are equally worth considering for the depiction our semantic memories.

Answers may be changed according to how we consider the axiom of distance in semantic

memories. When we assume that it holds an Euclid distance, it would be approximated to

graphical models. It would be approximated to tree structure representations when we can

assume that it holds a Hamming distance.

Rogers and McClelland (2004, 2011) might intend for their model to capture abstract

concepts. However, it appears to be unsuccessful for reasons described here. We should ask

again what conditions are required when constructing a model for our semantic memories.

We proposed a marginalization hypothesis as an alternative. This hypothesis is different

from the others because it can hold without the convergence zone (Damasio, 1989). Both

9. Discussion 



173

models could obtain similar MDS configurations. Therefore, we could not distinguish be-

tween them based only on the empirical data. Further, we propose that the ATL may rep-

resented tree structures. This gave another viewpoint of the “ATL-hub-plus” hypothesis in

terms of a function. When we assume list expressions to represent semantic memories, this

can be interpreted as both MDS configurations and tree structures. We might also consider

related findings of Thompson-Schill (2003) and Kiani et al. (2007).

Finally, a question about the roles of the frequency effect, or the eight times problem,

(Section 6.3), can be proposed. Plaut et al. (1996) dealt the frequency effect with a log-

arithmic transformation of words. However, there is no basis for this transformation. No

one might have understood how to include the frequency effect into neural network mod-

els. Therefore, it may be possible to propose a simulation about how models behave when

the frequency is dealt with as an independent variable. It might be interesting to ask how

performances of models are varied when the models suffered damages. We can ask this

problem further. That means that researchers cited here have not ever defined a standard

error curve and a standard decay curve. If someone can define these standard curves as ref-

erence points, we can compare frequency and regularity effects of words with the standard

curves. It would bring this research area to a higher level than ever.

McClelland et al. (2009); Rogers and McClelland (2008); Rogers and McClelland (2004,

2011); Rogers et al. (2004) proposed that the Rumelhart model could represent seman-

tic category and theoretical consideration greatly advanced. However, the assumption of

hidden and representation layers might not be a requirement for obtaining internal repre-

sentations. If we can postulate an operation to sum up or marginalize attributes related with

their interests, there is no need to hypothesize any intermediate layers at all. It might be

possible to preserve or keep the superordinate concept when we consider tree structures in

semantic memories. Rogers and McClelland (2004) might consider that their data contained

the WITH information, although they insisted on the WITHOUT hypothesis. Thus, we can

conclude that the WITH expression still plays an important role for memory representation,

because tree structure, a type of declarative knowledge, can contain MDS configurations.

Once upon a time, the Irish rock band U2 sang “With or Without You”,

With or without you, I can’t live

With or without categorization, the author hopes to know the truth of semantics.
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