心理統計学 1 前期中間試験

以下の文章で、適切な記号を選べ

1. サイコロを 2 回投げて、出た目の和が 12 となる確率 はどれか。サイコロの目の出方は片寄りなく全て 1/6 とする。

 $A \frac{1}{6}, B \frac{1}{6^2}, C \frac{1}{3}, D 0.6$

2. コインを 4 回投げて 2 回表の出る組合せはいつくある か。コインの裏表の出る確率はそれぞれ 1/2 とする。

A 1, B 4, C 6,

3. コインを 4 回投げて r 回表の出る確率はどれか。

 $A_{n}C_{r}(p)^{4},$ $D_{\frac{4!}{r!\cdot 2!}},$ $\operatorname{B}_{n}C_{r}\left(\frac{1}{2}\right)^{4}, \quad \operatorname{C}_{4}C_{r}\left(\frac{1}{2}\right)^{4},$

4. 図1は2項分布の確率密度関数と累積分布関数のグラ フである。コインを 10 回投げたとき、表の出る確率 が 0.5 である場合と 0.8 である場合との 2 種類、それ ぞれの確率密度関数と累積分布関数が描かれている。

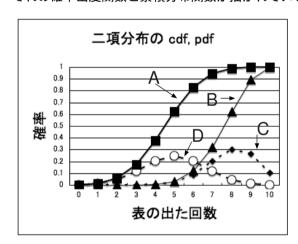


図 1: 2 項分布のグラフ

表の出る確率が 0.5 である場合の確率密度関数はどれ か。 図中の記号 (A,B,C,D) で答えよ。

- 5. 図1の2項分布のグラフの中で、表の出る確率が0.8の ときの累積分布関数はどれか。図中の記号(A,B,C,D) で答えよ。
- 6. 表の出る確率が 0.8 である 2 項分布に従う確率変数 x があったとき、10回試行したときの平均はどれか。

В 8. $C 0.8^{10}$, $D 0.8^2$ A 10.

7. 表の出る確率が 0.8 である 2 項分布に従う確率変数 x があったとき、10回試行したときの分散はどれか。

A 0.8×10 . B 0.8(1-0.8), C $10 \times 0.8(1-0.8)$ $D 0.8^{10} \times 0.2^{10}$

8. 組合せの定義として正しいものはどれか

 $_{n}C_{r} = \frac{n!}{(r-n)! \times (n-r)!},$

B ${}_{n}C_{r} = \frac{(n+r)!}{r! \times (n-r)!},$ C ${}_{n}C_{r} = \frac{n!}{r! \times (n-r)!},$ D ${}_{n}C_{r} = \frac{n!}{(r-1)! \times (n-r)!}$

 $9. \sum_{i=0}^{n} (ax_i + b)$ と等しいものはどれか。ただし a,b は定 数とする。

A $(a+b)\sum_{i=1}^{n} x_{i}$, B $a\sum_{i=1}^{n} x_{i} + b\sum_{i=1}^{n}$, C $a\sum_{i=1}^{n} x_{i} + nb$, D $\sum_{i=1}^{n} n(a+b)$

10. $\sum (ax_i+b)^2$ と等しいものはどれか。ただし $a,\,b$ は

 $A \qquad a^2 \sum x_i^2 + \sum x + b \sum,$

B $a^2 \sum x_i + 2abn + b^2$, C $a^2 \sum x_i + nb^2$, D $a^2 \sum x_i^2 + 2ab \sum x + nb^2$

11. 平均 (期待値) の定義として正しいものはどれか。

A 確率変数 x の値に、それぞれの出現確率をかけて、 足し合わせたもの

B 確率変数 x の値を合計したもの

C すべてのデータを合計し、確率変数でわったもの

D データ数を n とすれば 期待値に 1/n をかけたもの

12. データが {1,2,3,4,5} と与えられとき、期待値の計算 として誤っているものはどれか

A $\frac{1}{5} (1 + 1 \times 2 + 1 \times 3 + 1 \times 4 + 1 \times 5)$

B $\frac{1}{5}(1+2+3+4+5)$

 $\begin{array}{ll} C & \frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \frac{4}{5} + \frac{5}{5} \\ D & \frac{1}{5} \left(\frac{1}{5} + \frac{2}{5} + \frac{3}{5} + \frac{4}{5} + \frac{5}{5} \right) \end{array}$

13. f(x) を区間 $(-\infty, +\infty)$ で定義される確率密度関数であるとする。このとき正しいものはどれか。

$$\begin{array}{ll} \mathbf{A} & \int_{-\infty}^{\infty} f(x) dx = 0, \qquad \mathbf{B} & \int_{-\infty}^{\infty} f(x) dx = 1, \\ \mathbf{C} & \int_{-\infty}^{0} f(x) dx = E(X), \qquad \mathbf{D} & \int_{-\infty}^{0} E(x) dx = 1 \end{array}$$

14. 前問と同じく f(x) を区間 $(-\infty, +\infty)$ で定義される 確率密度関数であるとする。このとき正しいものはどれか。

A
$$0 \le f(x) \le 1$$
, B $0 \le f(x) \le F(x)$,
C $0 < f(x) < +\infty$, D $-\infty < f(x) < +\infty$

15. 次の式のうち分散の定義として誤っているものはどれか。

A
$$\frac{1}{n} \sum (x - E(x))^2$$
, B $\frac{1}{n} \sum x^2 - (E(X))^2$, C $\frac{1}{n} \sum x^2 - \left(\frac{1}{n} \sum x\right)^2$, D $\frac{1}{n} \sum \left(x - \frac{1}{n} \sum x\right)$

16. 図2は e^x , e^{x^2} , e^{-x} のいずれかである。

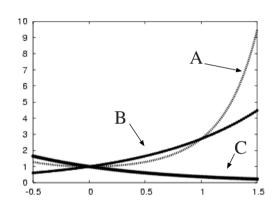


図 2: さまざまな指数関数

 e^{x^2} のグラフはどれか図中の記号 (A,B,C) で答えよ。 なお x 軸の範囲が -0.5 から 2 であることに注意する こと。

- 17. 図 2 のグラフで e^{-x} はどれか。同じく図中の記号 (A,B,C,D) で答えよ。
- 18. 図 3 は正規分布の確率密度関数を表したものである。それぞれの曲線は $N(0,1^2),\,N(-2,1^2),\,N(0,3^2),\,N(0,10^2)$ のいずれかであるとする。図 3 中の曲線 A は $N(0,1^2)$ を表すものとすれば、曲線 D で表現される正規分布は次のうちどれか。

$$\begin{array}{ll} {\rm A} \ N(0,1^2), & {\rm B} \ N(0,3^2), \\ {\rm C} \ N(-2,1^2) & {\rm D} \ N(0,10^2) \\ \end{array}$$

- 19. 図 3 で $N(-2,1^2)$ を表す曲線はどれか。図中の記号 (A,B,C,D) で答えよ。
- 20. 図 3 で $N(0,3^2)$ を表す曲線はどれか。図中の記号 (A,B,C,D) で答えよ。

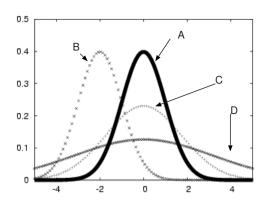


図 3: 正規分布のグラフ

21. 平均 60, 分散 3^2 (すなわち標準偏差は 3) の正規分布に 従う確率変数 x が x=66 であった。このときの z スコアはどれか

A 0, B 1, C 2, D 3

22. 正規分布の確率密度関数を $N(\mu,\sigma^2)$ とする。 $\int_{-\infty}^{1.0} N(0,1^2) dx = 0.84 \ \text{であるとした場合、} z \ \text{スコア }$ が -1 以下となる確率はどれか。

A 0.08, B 0.16, C 34, D 0.84

23. 平均 0 分散 1^2 である正規分布の確率密度関数を表す式はどれか

A
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$
,
B $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-0}{1})}$,

$$C f(x) = e^{-\frac{1}{2}(\frac{x-0}{1})^2},$$

$$D f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}x^2}$$

24. ある人の携帯電話の通話時間は平均 60 秒、分散 30^2 の 正規分布に従うことが分かっている。この人が 75 秒以下で通話を終了する確率はどれか。 $\int_{-\infty}^{0.5} N(0,1^2) dx = 0.691$ として答えよ。

A 0.154, B 0.309, C 0.5, D 0.691

25. 正規分布 $N(\mu, \sigma^2)$ であり得ない組合わせはどれか。

A
$$\mu = 1$$
, $\sigma^2 = 1^2$, B $\mu = 0$, $\sigma^2 = e^2$, C $\mu = -1$, $\sigma^2 = -1$, D $\mu = 0$, $\sigma^2 = 1^2$